Spring AI Alibaba 项目中实现LLM调用MCP工具的全链路日志追踪方案
背景介绍
在基于Spring AI Alibaba框架开发AI应用时,当大语言模型(LLM)调用MCP工具函数时,开发人员经常需要记录完整的调用链路信息,包括输入参数、输出结果以及执行时间等关键指标。这对于系统监控、性能优化和问题排查都至关重要。
核心解决方案
Spring AI Alibaba项目提供了基于Micrometer的观测机制来实现这一需求。该方案主要通过以下几个核心组件实现:
-
ObservationRegistry:作为Micrometer观测机制的核心注册中心,负责管理和记录所有观测数据。
-
ObservableToolCallingManager:专门用于工具调用的可观测性管理器,位于spring-ai-alibaba-core模块中。
-
自动配置:通过ArmsAutoConfiguration类实现开箱即用的观测功能配置。
具体实现方式
开发者可以通过以下配置启用全链路追踪功能:
@Configuration
public class ObservationConfig {
@Bean
public ObservationRegistry observationRegistry() {
return ObservationRegistry.create();
}
@Bean
public ToolCallingManager observableToolCallingManager(
ObservationRegistry observationRegistry) {
return ObservableToolCallingManager.builder()
.observationRegistry(observationRegistry)
.build();
}
}
实现原理
这套观测系统的工作原理如下:
-
数据采集:在LLM调用MCP工具时,ObservableToolCallingManager会自动捕获调用开始和结束时间。
-
参数记录:系统会记录工具调用的输入参数和返回结果。
-
上下文传递:通过Micrometer的上下文传播机制,确保调用链路的完整性。
-
指标输出:采集的数据可以通过多种方式输出,包括日志、监控系统等。
最佳实践
在实际项目中,建议:
-
结合具体业务需求,在ObservableToolCallingManager中添加自定义标签和属性。
-
对于敏感数据,实现适当的数据脱敏处理。
-
根据系统负载情况,调整采样率以平衡性能和可观测性需求。
-
将观测数据与业务日志关联,便于问题定位。
扩展应用
这套观测机制不仅可以用于基本的调用追踪,还可以扩展应用于:
- 性能瓶颈分析
- 异常调用检测
- 调用链路可视化
- 容量规划
总结
Spring AI Alibaba提供的这套观测方案为LLM调用MCP工具的全链路追踪提供了标准化实现。通过合理配置和使用,开发者可以轻松获取详细的调用信息,为AI应用的稳定运行和持续优化提供有力支持。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00