Llama-recipes项目中使用自定义数据集的技术实践
2025-05-13 03:36:04作者:管翌锬
在基于Llama-recipes项目进行模型微调时,使用自定义数据集是常见的需求。本文将深入探讨如何正确处理自定义数据集加载过程中的tokenizer模板配置问题。
问题背景
当用户尝试使用自定义数据集进行微调时,可能会遇到tokenizer.chat_template未设置的报错。这是因为Llama基础模型(如meta-llama/Llama-3.2-1B)在预训练阶段并未使用聊天模板,这与Instruct版本模型形成对比。
解决方案详解
-
创建自定义数据集文件 需要创建一个继承自Dataset类的自定义数据集类,通常命名为custom_dataset.py。在该文件中,除了实现数据加载逻辑外,关键是要正确配置tokenizer的chat_template属性。
-
模板配置方法 在get_custom_dataset函数中,应当明确设置tokenizer的聊天模板。推荐使用DEFAULT_CHATML_CHAT_TEMPLATE作为默认模板,这可以通过以下代码实现:
tokenizer.chat_template = DEFAULT_CHATML_CHAT_TEMPLATE -
不同模型版本的差异处理
- 基础模型:需要手动设置chat_template
- Instruct模型:已内置模板配置,无需额外设置
最佳实践建议
-
模板选择策略 根据任务类型选择合适的模板:
- 对话任务:使用DEFAULT_CHATML_CHAT_TEMPLATE
- 单轮任务:可考虑更简单的模板结构
-
执行命令示例 典型的微调命令应包含以下关键参数:
torchrun --nnodes 1 --nproc_per_node 8 finetuning.py \ --model_name meta-llama/Llama-3.2-1B \ --dataset "custom_dataset" \ --custom_dataset.file "custom_dataset.py" \ --enable_fsdp \ --use_peft \ --peft_method lora -
错误排查 当遇到模板相关错误时,首先检查:
- 是否使用了正确的模型版本
- 自定义数据集中是否正确定义了模板
- tokenizer配置是否完整
技术原理深入
聊天模板的本质是将对话历史结构化为模型可理解的输入格式。在Llama模型中,这个模板决定了系统提示、用户输入和模型响应之间的组织方式。正确的模板配置对于模型理解任务要求和生成合适响应至关重要。
对于希望进一步定制模板的高级用户,可以参考Hugging Face的模板编写规范,创建更适合特定任务的对话结构。但需注意,过大的模板改动可能需要调整训练策略才能获得理想效果。
通过本文的指导,开发者应该能够顺利地在Llama-recipes项目中集成自定义数据集,并正确处理相关的模板配置问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705