Llama-recipes项目中使用自定义数据集的技术实践
2025-05-13 03:36:04作者:管翌锬
在基于Llama-recipes项目进行模型微调时,使用自定义数据集是常见的需求。本文将深入探讨如何正确处理自定义数据集加载过程中的tokenizer模板配置问题。
问题背景
当用户尝试使用自定义数据集进行微调时,可能会遇到tokenizer.chat_template未设置的报错。这是因为Llama基础模型(如meta-llama/Llama-3.2-1B)在预训练阶段并未使用聊天模板,这与Instruct版本模型形成对比。
解决方案详解
-
创建自定义数据集文件 需要创建一个继承自Dataset类的自定义数据集类,通常命名为custom_dataset.py。在该文件中,除了实现数据加载逻辑外,关键是要正确配置tokenizer的chat_template属性。
-
模板配置方法 在get_custom_dataset函数中,应当明确设置tokenizer的聊天模板。推荐使用DEFAULT_CHATML_CHAT_TEMPLATE作为默认模板,这可以通过以下代码实现:
tokenizer.chat_template = DEFAULT_CHATML_CHAT_TEMPLATE -
不同模型版本的差异处理
- 基础模型:需要手动设置chat_template
- Instruct模型:已内置模板配置,无需额外设置
最佳实践建议
-
模板选择策略 根据任务类型选择合适的模板:
- 对话任务:使用DEFAULT_CHATML_CHAT_TEMPLATE
- 单轮任务:可考虑更简单的模板结构
-
执行命令示例 典型的微调命令应包含以下关键参数:
torchrun --nnodes 1 --nproc_per_node 8 finetuning.py \ --model_name meta-llama/Llama-3.2-1B \ --dataset "custom_dataset" \ --custom_dataset.file "custom_dataset.py" \ --enable_fsdp \ --use_peft \ --peft_method lora -
错误排查 当遇到模板相关错误时,首先检查:
- 是否使用了正确的模型版本
- 自定义数据集中是否正确定义了模板
- tokenizer配置是否完整
技术原理深入
聊天模板的本质是将对话历史结构化为模型可理解的输入格式。在Llama模型中,这个模板决定了系统提示、用户输入和模型响应之间的组织方式。正确的模板配置对于模型理解任务要求和生成合适响应至关重要。
对于希望进一步定制模板的高级用户,可以参考Hugging Face的模板编写规范,创建更适合特定任务的对话结构。但需注意,过大的模板改动可能需要调整训练策略才能获得理想效果。
通过本文的指导,开发者应该能够顺利地在Llama-recipes项目中集成自定义数据集,并正确处理相关的模板配置问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759