k0s项目Airgap部署中containerd配置问题解析与解决方案
背景介绍
k0s作为一款轻量级Kubernetes发行版,在离线环境(Airgap)部署时需要特别注意容器镜像的管理。近期在v1.30.4+k0s.0版本中,用户报告了Airgap部署失败的问题,核心表现为pause容器镜像无法正确加载。
问题现象
在全新安装的v1.30.4+k0s.0环境中,当使用Airgap模式部署时,系统组件Pod(如calico-node、kube-proxy等)均无法正常启动。通过查看Pod事件日志,发现containerd尝试从外部拉取pause:3.8镜像失败,而实际上Airgap包中只包含pause:3.9版本。
根本原因分析
经过深入排查,发现该问题主要由以下因素导致:
-
containerd配置版本不匹配:用户部署时覆盖了默认的containerd.toml配置文件,使用了旧版格式的配置,导致k0s无法正确注入默认的pause镜像设置。
-
配置覆盖机制变化:从k0s 1.27.1版本开始,containerd配置采用了新的动态加载机制,旧版的全量覆盖方式会破坏k0s的默认配置。
-
镜像版本硬编码:虽然k0s默认使用pause:3.9镜像,但旧版配置可能导致containerd回退到硬编码的pause:3.8版本。
解决方案
正确配置containerd
对于需要自定义containerd配置的场景,应采用k0s推荐的配置方式:
-
使用动态配置目录:将自定义配置放置在/etc/k0s/containerd.d/目录下,而非直接覆盖/etc/k0s/containerd.toml文件。
-
保留默认配置:k0s会自动生成基础配置,用户只需添加必要的自定义部分。
-
镜像仓库认证:如需配置私有仓库认证,可创建单独的配置文件,例如:
# /etc/k0s/containerd.d/registry.toml
[plugins."io.containerd.grpc.v1.cri".registry]
[plugins."io.containerd.grpc.v1.cri".registry.mirrors]
[plugins."io.containerd.grpc.v1.cri".registry.mirrors."docker.io"]
endpoint = ["https://registry-1.docker.io"]
[plugins."io.containerd.grpc.v1.cri".registry.configs]
[plugins."io.containerd.grpc.v1.cri".registry.configs."registry.example.com".auth]
username = "user"
password = "pass"
Airgap部署最佳实践
-
验证镜像包完整性:部署前检查airgap-images-list.txt确保包含所有必需镜像。
-
配置镜像拉取策略:在k0s配置中明确设置imagePullPolicy为Never。
-
版本兼容性检查:确保k0s版本与containerd配置格式匹配。
经验总结
-
避免全量覆盖配置:现代容器运行时通常采用模块化配置,应优先使用追加方式而非覆盖。
-
版本升级注意事项:跨多个次要版本升级时,需特别注意配置格式的变化。
-
离线环境测试:Airgap部署前应在隔离环境充分验证,特别是镜像依赖关系。
通过正确理解k0s的containerd配置机制,并遵循推荐的配置方式,可以避免类似问题的发生,确保Airgap环境下的稳定部署。对于需要深度定制的场景,建议参考k0s官方文档中的运行时配置指南,采用符合当前版本的最佳实践。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00