k0s项目Airgap部署中containerd配置问题解析与解决方案
背景介绍
k0s作为一款轻量级Kubernetes发行版,在离线环境(Airgap)部署时需要特别注意容器镜像的管理。近期在v1.30.4+k0s.0版本中,用户报告了Airgap部署失败的问题,核心表现为pause容器镜像无法正确加载。
问题现象
在全新安装的v1.30.4+k0s.0环境中,当使用Airgap模式部署时,系统组件Pod(如calico-node、kube-proxy等)均无法正常启动。通过查看Pod事件日志,发现containerd尝试从外部拉取pause:3.8镜像失败,而实际上Airgap包中只包含pause:3.9版本。
根本原因分析
经过深入排查,发现该问题主要由以下因素导致:
-
containerd配置版本不匹配:用户部署时覆盖了默认的containerd.toml配置文件,使用了旧版格式的配置,导致k0s无法正确注入默认的pause镜像设置。
-
配置覆盖机制变化:从k0s 1.27.1版本开始,containerd配置采用了新的动态加载机制,旧版的全量覆盖方式会破坏k0s的默认配置。
-
镜像版本硬编码:虽然k0s默认使用pause:3.9镜像,但旧版配置可能导致containerd回退到硬编码的pause:3.8版本。
解决方案
正确配置containerd
对于需要自定义containerd配置的场景,应采用k0s推荐的配置方式:
-
使用动态配置目录:将自定义配置放置在/etc/k0s/containerd.d/目录下,而非直接覆盖/etc/k0s/containerd.toml文件。
-
保留默认配置:k0s会自动生成基础配置,用户只需添加必要的自定义部分。
-
镜像仓库认证:如需配置私有仓库认证,可创建单独的配置文件,例如:
# /etc/k0s/containerd.d/registry.toml
[plugins."io.containerd.grpc.v1.cri".registry]
[plugins."io.containerd.grpc.v1.cri".registry.mirrors]
[plugins."io.containerd.grpc.v1.cri".registry.mirrors."docker.io"]
endpoint = ["https://registry-1.docker.io"]
[plugins."io.containerd.grpc.v1.cri".registry.configs]
[plugins."io.containerd.grpc.v1.cri".registry.configs."registry.example.com".auth]
username = "user"
password = "pass"
Airgap部署最佳实践
-
验证镜像包完整性:部署前检查airgap-images-list.txt确保包含所有必需镜像。
-
配置镜像拉取策略:在k0s配置中明确设置imagePullPolicy为Never。
-
版本兼容性检查:确保k0s版本与containerd配置格式匹配。
经验总结
-
避免全量覆盖配置:现代容器运行时通常采用模块化配置,应优先使用追加方式而非覆盖。
-
版本升级注意事项:跨多个次要版本升级时,需特别注意配置格式的变化。
-
离线环境测试:Airgap部署前应在隔离环境充分验证,特别是镜像依赖关系。
通过正确理解k0s的containerd配置机制,并遵循推荐的配置方式,可以避免类似问题的发生,确保Airgap环境下的稳定部署。对于需要深度定制的场景,建议参考k0s官方文档中的运行时配置指南,采用符合当前版本的最佳实践。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00