使用stable-whisper处理长音频转录结果的时序偏移问题
2025-07-07 14:34:01作者:余洋婵Anita
在语音转文字的实际应用中,我们经常需要对长音频进行分段处理。当从完整的转录结果中截取部分片段时,会遇到一个常见问题:截取后的JSON文件时间戳仍然保持原始音频的绝对时间,而非从零开始重新计时。本文将介绍如何利用stable-whisper库解决这个问题。
问题背景
假设我们已经完成了一个1小时视频的语音转录,生成了包含完整时间戳的JSON结果文件。现在需要从中提取3分钟的片段,并希望新的JSON文件中的时间戳能够从0开始计算,而不是保留原始文件中的绝对时间位置。
解决方案
stable-whisper库提供了WhisperResult
类和offset_time()
方法,可以方便地处理时间戳偏移问题。具体实现步骤如下:
- 首先加载原始的JSON转录结果文件
- 移除不需要的片段
- 对剩余片段的时间戳进行偏移调整
- 保存处理后的结果
代码实现
# 加载原始转录结果
result = stable_whisper.WhisperResult('result.json')
# 移除第一个片段(示例)
result.remove_segment(0)
# 计算时间偏移量并应用
result.offset_time(-result[0].start)
# 保存处理后的结果
result.save_as_json('trimmed.json')
技术细节
WhisperResult
类:这是stable-whisper提供的核心类,用于加载和操作转录结果remove_segment()
方法:用于删除指定索引的转录片段offset_time()
方法:接受一个时间偏移量参数,正数表示向后偏移,负数表示向前偏移- 通过取第一个剩余片段的start时间作为偏移量,可以确保新的JSON文件从0开始计时
应用场景
这种方法特别适用于以下场景:
- 从长视频中提取精彩片段
- 制作视频集锦
- 分割长音频用于不同用途
- 创建教学视频的分段字幕
注意事项
- 确保在移除片段前先备份原始文件
- 偏移量计算要准确,避免出现负时间戳
- 处理后的文件仍然保留原有的文本和时序对应关系
- 此方法同样适用于其他需要重新计算时间戳的场景
通过这种方法,我们可以灵活地处理长音频转录结果,生成符合需求的片段化转录文件,同时保持时间戳的准确性。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息010GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
486
37

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
315
10

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
191

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
991
395

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
276

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
937
554

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69