PixelStreamingInfrastructure 项目使用教程
1. 项目介绍
PixelStreamingInfrastructure 是 Epic Games 提供的一个开源项目,旨在帮助开发者快速搭建和部署基于 WebRTC 的像素流媒体应用。该项目包含了所有必要的组件,如 SFU(Selective Forwarding Unit)、Matchmaker、SignallingWebServer 等,以及前端实现,使得开发者能够轻松地将 Unreal Engine 项目通过浏览器进行流式传输。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具和环境:
- Node.js (建议版本 14.x 或更高)
- Git
- Unreal Engine (建议版本 4.26 或更高)
2.2 克隆项目
首先,克隆 PixelStreamingInfrastructure 项目到本地:
git clone https://github.com/EpicGamesExt/PixelStreamingInfrastructure.git
cd PixelStreamingInfrastructure
2.3 安装依赖
进入项目目录后,安装所需的依赖:
npm install
2.4 启动 SignallingWebServer
启动 SignallingWebServer:
npm run start
2.5 启动 Unreal Engine 项目
在 Unreal Engine 中打开你的项目,并启用 Pixel Streaming 插件。配置好相关设置后,启动项目。
2.6 访问前端
打开浏览器,访问 http://localhost:80,你应该能够看到你的 Unreal Engine 项目通过浏览器进行流式传输。
3. 应用案例和最佳实践
3.1 应用案例
PixelStreamingInfrastructure 可以应用于多种场景,如:
- 远程协作:通过浏览器实时查看和操作 Unreal Engine 项目,适用于远程团队协作。
- 虚拟展厅:在浏览器中展示高保真的 3D 模型和场景,适用于虚拟展厅和在线展览。
- 教育培训:通过浏览器进行实时互动教学,适用于虚拟实验室和远程培训。
3.2 最佳实践
- 优化网络配置:确保服务器和客户端之间的网络连接稳定,减少延迟和丢包。
- 调整分辨率和帧率:根据实际需求调整流媒体的分辨率和帧率,以平衡画质和性能。
- 使用 CDN:对于大规模部署,建议使用 CDN(内容分发网络)来分发流媒体内容,提高访问速度和稳定性。
4. 典型生态项目
4.1 WebRTC
WebRTC 是一个开源项目,提供了实时通信的能力,是 PixelStreamingInfrastructure 的核心技术之一。
4.2 Unreal Engine
Unreal Engine 是 Epic Games 开发的游戏引擎,广泛应用于游戏开发、虚拟现实、建筑可视化等领域。PixelStreamingInfrastructure 与 Unreal Engine 紧密结合,提供了强大的流媒体解决方案。
4.3 Node.js
Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时,用于构建快速、可扩展的网络应用。PixelStreamingInfrastructure 使用 Node.js 来实现 SignallingWebServer 和其他后端服务。
通过以上步骤,你应该能够快速上手并使用 PixelStreamingInfrastructure 项目。希望这篇教程对你有所帮助!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00