Langchain-ChatGLM项目中多Xinference框架下Embedding模型调度机制解析
2025-05-04 19:48:28作者:钟日瑜
在Langchain-ChatGLM项目的0.3版本中,当配置多个Xinference框架时,关于Embedding模型的选择机制存在一个值得注意的技术细节。本文将从技术实现角度深入分析这一机制,并探讨其潜在影响和优化方向。
当前实现机制
项目目前对Embedding模型的调度采用了"优先使用第一个"的简单策略。具体表现为:
- 当系统配置了多个Xinference框架时,每个框架可能都部署了相同的Embedding模型(如bge-large-en-v1.5)
- 在创建知识库或执行RAG对话时,系统会默认选择第一个Xinference框架中的对应模型
- 这种选择是静态的,不会根据负载或可用性进行动态调整
与LLM调度的对比
值得注意的是,项目对LLM(大语言模型)的处理采用了不同的策略:
- LLM具有简单的调度机制,会尝试将请求分配到空闲的platform上
- 这种调度考虑了资源利用率,避免了单一节点的过载
- 用户可以在对话界面明确选择使用哪个platform和具体模型
现有机制的局限性
当前的Embedding模型选择方式存在几个明显的技术限制:
- 缺乏容错能力:当首选Xinference框架不可用时,系统不会自动切换到备用框架
- 负载不均衡:所有Embedding请求都集中在第一个框架,无法利用多节点的计算资源
- 配置不灵活:用户无法像选择LLM那样明确指定使用哪个框架的Embedding模型
潜在优化方向
基于当前实现,可以考虑以下几个技术改进方案:
- 实现负载均衡:引入简单的轮询或随机选择机制,平衡多个框架的负载
- 增加容错机制:当首选框架不可用时,自动尝试其他可用框架
- 提供显式选择:允许用户在知识库创建时指定优先使用的框架
- 健康检查机制:定期检测各框架可用性,动态更新可用模型列表
技术实现建议
对于希望自行改进的开发者,可以考虑以下实现路径:
- 在ModelCenter类中扩展Embedding模型的选择逻辑
- 引入类似LLM的简单调度器,维护可用Embedding模型的状态
- 增加失败重试机制,当请求失败时自动尝试其他可用节点
- 考虑添加本地缓存层,减少对远程服务的重复调用
总结
Langchain-ChatGLM项目当前对多Xinference框架下Embedding模型的选择机制还有优化空间。理解这一机制对于项目的高可用部署和性能调优具有重要意义。开发者可以根据实际需求,选择适当的改进方案来增强系统的健壮性和灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.55 K
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
170
12
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
105
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.85 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
732
70