Halide项目中实现CUDA协同加载的矩阵乘法优化
2025-06-04 00:07:35作者:尤峻淳Whitney
概述
在GPU编程中,矩阵乘法是一个经典的计算密集型操作,其性能很大程度上取决于内存访问模式。本文将探讨如何在Halide项目中实现类似手工CUDA内核中的协同加载技术,以优化矩阵乘法性能。
传统CUDA实现分析
典型的CUDA矩阵乘法优化实现会使用共享内存来减少全局内存访问。如示例代码所示,关键点在于:
- 将输入矩阵A和B的块加载到共享内存
- 使用线程协作完成加载过程
- 通过双重循环结构(外层循环遍历块,内层循环计算乘积)
这种实现利用了共享内存的低延迟特性,并通过线程协作分摊内存访问开销。
Halide实现挑战
Halide作为领域特定语言(DSL),其优势在于将算法与调度分离。但在实现上述CUDA优化模式时遇到了几个挑战:
- 默认情况下,Halide会为每个线程分配独立的内存空间,而非使用共享内存
- 需要精确控制数据加载的并行化方式
- 需要确保同步点的正确放置
Halide解决方案
通过分析Halide生成的中间表示(IR),我们发现关键点在于正确设置计算调度和内存类型。以下是核心优化策略:
- 计算位置调度:使用
compute_at
将数据加载定位到适当的循环层级 - 并行化控制:通过
gpu_threads
显式指定加载操作的并行维度 - 内存类型指定:虽然直接使用
store_in
可能不奏效,但通过正确的调度可以实现类似效果
改进后的调度代码应类似:
A.in_().compute_at(prod, ko).gpu_threads(hl._0)
B.in_().compute_at(prod, ko).gpu_threads(hl._1)
技术细节解析
- 维度变量:Halide中使用
_0
、_1
等特殊变量引用输入缓冲区的维度 - 内存分配:正确的调度会使Halide自动在共享内存中分配临时缓冲区
- 同步保证:Halide会自动在适当的边界插入同步操作
性能考量
这种实现方式与手工CUDA内核相比:
- 保持了相同的计算效率
- 获得了Halide调度灵活性的优势
- 可能产生略微不同的寄存器使用模式
结论
通过Halide的声明式调度系统,我们可以实现与手工优化CUDA代码相媲美的矩阵乘法性能。关键在于理解Halide调度原语与底层硬件特性的对应关系,特别是:
- 正确放置计算位置
- 精确控制并行化维度
- 理解Halide自动内存管理机制
这种方法不仅适用于矩阵乘法,也可推广到其他需要协同加载的GPU计算模式中。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
50
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191