Metro项目中启用packageExports时axios加载失败的解决方案
问题背景
在使用Expo Monorepo项目时,开发者可能会遇到一个与Metro打包工具相关的问题:当在自定义Metro配置中启用unstable_enablePackageExports选项时,axios库会加载失败并报错。错误信息表明axios尝试导入Node.js标准库模块"url",而React Native运行环境并不包含这些Node.js标准库。
错误现象
具体错误表现为:
The package at "node_modules/axios/dist/node/axios.cjs" attempted to import the Node standard library module "url".
It failed because the native React runtime does not include the Node standard library.
问题根源
这个问题源于Metro打包工具中的unstable_enablePackageExports功能。当启用此选项时,Metro会遵循Node.js的package.json中的"exports"字段来解析模块。axios库在其package.json中定义了不同的导出路径,包括针对Node环境的CommonJS版本(axios.cjs)和针对浏览器的ES模块版本。
在React Native环境中,我们实际上需要的是浏览器兼容版本,而不是Node.js版本。但由于启用了package exports功能,Metro可能会错误地选择Node.js版本的axios,从而导致上述错误。
解决方案
通过调整Metro配置中的条件名称解析顺序,可以强制Metro选择适合React Native环境的模块版本。具体解决方案如下:
const { getDefaultConfig } = require('expo/metro-config');
const config = getDefaultConfig(__dirname);
config.resolver.unstable_enablePackageExports = true;
// 添加以下配置
config.resolver.unstable_conditionNames = [
'browser',
'require',
'react-native',
];
module.exports = config;
配置解析
unstable_conditionNames数组定义了模块解析时的条件名称优先级:
'browser':优先选择浏览器兼容版本'require':支持CommonJS模块'react-native':React Native特定环境
通过这样的配置顺序,Metro会优先选择适合React Native环境的模块版本,而不会错误地加载Node.js专用的axios版本。
注意事项
- 这个解决方案适用于Metro 0.80.9及以上版本
- 类似的配置方法也可以用于解决其他库的兼容性问题
- 如果项目中使用的是Yarn 4.x版本,可能需要额外的配置来确保模块解析正确
总结
在React Native项目中使用Metro打包工具时,启用package exports功能可以带来更好的模块解析能力,但也可能导致一些兼容性问题。通过合理配置unstable_conditionNames,开发者可以确保工具链选择正确的模块版本,从而避免Node.js特定模块被错误加载的问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00