GPAC项目中的MP4Box文件处理缓冲区溢出问题分析
问题概述
在GPAC多媒体框架的MP4Box工具中,发现了一个存在于文件输入处理模块的栈缓冲区溢出问题。该问题位于src/filters/in_file.c文件的filein_process函数中,主要由于使用了不安全的sprintf函数进行字符串格式化操作,导致当处理超长文件名时可能触发缓冲区溢出。
技术背景
GPAC是一个开源的跨平台多媒体框架,MP4Box是其核心工具之一,用于处理MP4文件的各种操作。在文件处理过程中,MP4Box会通过过滤器(filter)机制来处理输入文件,其中in_file.c模块负责文件输入处理。
问题细节
问题的核心在于filein_process函数中对状态信息的格式化处理。函数定义了一个固定大小的字符数组szStatus(1024字节),然后使用sprintf将包含源文件名的状态信息格式化到这个缓冲区中:
char szStatus[1024];
sprintf(szStatus, "[FileList] Switching to file #avc302 %s @@@", gf_file_basename(ctx->src));
当源文件名(ctx->src)的基名部分(gf_file_basename返回结果)过长时,格式化后的字符串长度可能超过1024字节,导致栈缓冲区溢出。
问题影响
该问题可导致以下后果:
- 程序崩溃(段错误)
- 潜在的安全风险
- 影响MP4Box处理特定文件名时的稳定性
复现方法
使用包含超长文件名的MP4文件作为输入,例如:
./MP4Box -dash 1000 /dev/null 超长文件名.mp4
其中"超长文件名.mp4"需要包含足够长的字符序列以触发缓冲区溢出。
技术分析
从地址消毒剂(AddressSanitizer)的报告可以看出:
- 溢出发生在栈帧偏移量3056处
- 写入操作大小为1811字节,远超目标缓冲区大小
- 溢出变量是
szStatus600(行697) - 调用链从
vsprintf到filein_process再到主处理流程
这种类型的问题属于典型的C语言字符串处理安全问题,根本原因在于:
- 使用了不安全的
sprintf而非长度受限的snprintf - 未对输入文件名长度进行适当校验
- 固定大小的缓冲区设计无法适应所有可能的输入情况
修复方案
修复方案应采用以下方法之一或组合:
- 使用安全的字符串格式化函数如
snprintf - 增加输入文件名长度校验
- 动态分配足够大的缓冲区
在GPAC项目的修复中,开发者采用了第一种方案,通过使用sizeof操作符确保格式化操作不会超出缓冲区边界。
安全建议
对于类似的多媒体处理工具,建议:
- 全面审计所有字符串处理代码
- 用安全函数替换所有不安全的字符串操作
- 对用户提供的输入实施严格的长度检查
- 在持续集成中加入静态分析和模糊测试
总结
这个案例再次提醒我们,在C/C++开发中处理用户输入时需要格外小心。即使是像文件名这样的常见输入,如果不加以适当限制,也可能成为安全问题的来源。多媒体处理工具尤其需要注意这类问题,因为它们经常需要处理来自各种来源的输入文件。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00