Async-profiler与虚拟线程性能分析问题解析
2025-05-28 20:23:11作者:管翌锬
在Java 23版本之前,使用async-profiler对虚拟线程进行性能分析时可能会遇到两个显著问题:分析结果与JFR(Java Flight Recorder)存在明显差异,以及分析过程中系统CPU使用率异常升高。本文将深入探讨这一现象的技术背景、根本原因及解决方案。
问题现象
当开发者在JDK 21环境下使用async-profiler分析虚拟线程应用时,会观察到:
- 性能分析结果与JFR记录的热点方法分布完全不同
- 分析期间系统CPU使用率飙升至接近50%
- async-profiler显示大量时间消耗在
VirtualThread.yield等底层方法上,而JFR则完全忽略这些调用
技术背景
虚拟线程的实现机制
Java虚拟线程是JDK 19引入的轻量级线程,其调度由JVM而非操作系统负责。当虚拟线程执行阻塞操作时,JVM会将其挂起并切换到其他虚拟线程,这个过程称为"虚拟线程转换"。
性能分析工具的差异
- async-profiler:采用低开销的采样方式,能够捕获所有线程状态(包括虚拟线程转换等JVM内部操作)
- JFR:仅采样执行Java代码的线程,会主动过滤掉JVM内部操作
根本原因
该问题的本质是JDK 21及更早版本中存在的一个JVM缺陷(已在JDK 23中修复)。当启用虚拟线程时,JVM会通过JVMTI接口处理线程状态转换,这个过程中产生了意外的性能开销。
解决方案
对于不同JDK版本的用户:
-
JDK 23及以上版本:
- 问题已得到根本性修复
- async-profiler和JFR的分析结果将保持基本一致
- 仍需注意JFR会过滤部分JVM内部操作的特点
-
JDK 21及更早版本:
- 推荐升级到JDK 23
- 若无法升级,可使用启动参数
-XX:-DoJVMTIVirtualThreadTransitions禁用有问题的实现 - 需要理解JFR会丢失部分样本数据的特性
性能分析实践建议
- 对于虚拟线程应用,建议优先使用async-profiler获取完整调用信息
- 比较不同工具结果时,注意JFR的采样局限性
- 在JDK 23环境下,async-profiler的GC活动记录可以帮助发现JFR忽略的内存问题
- 当发现分析期间CPU使用率异常时,首先检查JDK版本
总结
虚拟线程的性能分析需要特别注意JVM实现版本和工具特性。随着JDK 23的完善,这一问题已得到解决,但开发者仍需了解不同分析工具的设计差异,才能准确解读性能数据。对于仍在使用旧版JDK的团队,通过特定参数可以规避这一问题,但长期解决方案仍是升级到修复后的JDK版本。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1