Async-profiler与虚拟线程性能分析问题解析
2025-05-28 22:36:44作者:管翌锬
在Java 23版本之前,使用async-profiler对虚拟线程进行性能分析时可能会遇到两个显著问题:分析结果与JFR(Java Flight Recorder)存在明显差异,以及分析过程中系统CPU使用率异常升高。本文将深入探讨这一现象的技术背景、根本原因及解决方案。
问题现象
当开发者在JDK 21环境下使用async-profiler分析虚拟线程应用时,会观察到:
- 性能分析结果与JFR记录的热点方法分布完全不同
 - 分析期间系统CPU使用率飙升至接近50%
 - async-profiler显示大量时间消耗在
VirtualThread.yield等底层方法上,而JFR则完全忽略这些调用 
技术背景
虚拟线程的实现机制
Java虚拟线程是JDK 19引入的轻量级线程,其调度由JVM而非操作系统负责。当虚拟线程执行阻塞操作时,JVM会将其挂起并切换到其他虚拟线程,这个过程称为"虚拟线程转换"。
性能分析工具的差异
- async-profiler:采用低开销的采样方式,能够捕获所有线程状态(包括虚拟线程转换等JVM内部操作)
 - JFR:仅采样执行Java代码的线程,会主动过滤掉JVM内部操作
 
根本原因
该问题的本质是JDK 21及更早版本中存在的一个JVM缺陷(已在JDK 23中修复)。当启用虚拟线程时,JVM会通过JVMTI接口处理线程状态转换,这个过程中产生了意外的性能开销。
解决方案
对于不同JDK版本的用户:
- 
JDK 23及以上版本:
- 问题已得到根本性修复
 - async-profiler和JFR的分析结果将保持基本一致
 - 仍需注意JFR会过滤部分JVM内部操作的特点
 
 - 
JDK 21及更早版本:
- 推荐升级到JDK 23
 - 若无法升级,可使用启动参数
-XX:-DoJVMTIVirtualThreadTransitions禁用有问题的实现 - 需要理解JFR会丢失部分样本数据的特性
 
 
性能分析实践建议
- 对于虚拟线程应用,建议优先使用async-profiler获取完整调用信息
 - 比较不同工具结果时,注意JFR的采样局限性
 - 在JDK 23环境下,async-profiler的GC活动记录可以帮助发现JFR忽略的内存问题
 - 当发现分析期间CPU使用率异常时,首先检查JDK版本
 
总结
虚拟线程的性能分析需要特别注意JVM实现版本和工具特性。随着JDK 23的完善,这一问题已得到解决,但开发者仍需了解不同分析工具的设计差异,才能准确解读性能数据。对于仍在使用旧版JDK的团队,通过特定参数可以规避这一问题,但长期解决方案仍是升级到修复后的JDK版本。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446