OP-TEE项目新增RISC-V架构支持的技术演进
随着RISC-V架构在嵌入式系统和安全领域的广泛应用,开源可信执行环境项目OP-TEE也迎来了对RISC-V架构的官方支持。本文将详细介绍这一技术演进过程。
RISC-V架构支持背景
RISC-V作为一种开源指令集架构,近年来在处理器领域获得了广泛关注。OP-TEE作为开源的可信执行环境实现,需要支持这一新兴架构以满足市场需求。开发团队通过一系列技术讨论和代码提交,最终实现了对RISC-V架构的完整支持。
技术实现路径
实现RISC-V支持主要涉及以下几个关键步骤:
-
工具链准备:在Ubuntu 22.04系统中,通过安装gcc-riscv64-linux-gnu工具链包获取RISC-V交叉编译器。这一工具链将用于编译OP-TEE的核心组件和用户空间可信应用。
-
构建参数配置:开发团队确定了以下关键构建参数组合:
- ARCH=riscv:指定目标架构为RISC-V
- PLATFORM=virt:使用QEMU虚拟平台
- CFG_USER_TA_TARGETS=ta_rv64:指定64位RISC-V可信应用目标
- CFG_RV64_core=y:启用64位RISC-V核心支持
-
交叉编译设置:通过CROSS_COMPILE系列参数指定使用RISC-V工具链进行编译,并支持ccache加速。
CI集成方案
为确保代码质量,开发团队将RISC-V构建集成到持续集成(CI)系统中:
-
构建阶段:首先在现有的"make (multi-platform)"任务中添加RISC-V平台的构建验证,确保基本编译功能正常。
-
测试阶段:未来计划新增"make check (QEMU riscv64)"专用任务,用于运行RISC-V平台上的完整测试套件。这一阶段需要额外的Linux内核和安全管理器(SM)补丁支持。
技术挑战与解决方案
在实现过程中,开发团队面临并解决了以下技术挑战:
-
工具链兼容性:确保不同版本的RISC-V工具链都能正确编译OP-TEE组件。
-
平台抽象层:为RISC-V架构实现必要的平台抽象接口,包括异常处理、内存管理等核心功能。
-
安全机制适配:将OP-TEE的安全特性(如地址空间隔离、安全监控等)正确映射到RISC-V的硬件特性上。
未来发展方向
随着基础构建支持的完成,OP-TEE对RISC-V的支持将向以下方向发展:
-
运行时验证:在CI中增加实际的运行时测试,验证功能正确性。
-
硬件平台扩展:从QEMU虚拟平台扩展到实际硬件平台支持。
-
性能优化:针对RISC-V架构特点进行专项优化,提升执行效率。
这一系列工作标志着OP-TEE项目对新兴处理器架构的支持能力迈上新台阶,为RISC-V生态系统的安全解决方案提供了重要基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00