PyTorch-A2C-PPO-ACKTR-GAIL 安装与使用教程
2024-08-10 17:48:25作者:伍希望
1. 项目目录结构及介绍
该项目的目录结构如下:
├── README.md // 主要说明文件
├── LICENSE // 开源许可证文件
├── requirements.txt // 依赖库列表
├── run_all.yaml // 运行所有任务的配置文件示例
├── setup.py // Python打包配置文件
├── main.py // 主程序入口
├── visualize.ipynb // 可视化脚本 (Jupyter notebook)
└── pytorch-a2c-ppo-acktr/ // 实现算法的核心代码目录
├── __init__.py
├── agent.py // 代理(agent)类,包含了策略网络和值函数等
├── envs // 环境(envs)模块,可能包括不同的环境实现
├── utils.py // 辅助工具函数
└── algo // 包含了A2C, PPO, ACKTR等算法的实现
├── a2c.py
├── ppo.py
├── acktr.py
└── common.py // 通用的训练功能
pytorch-a2c-ppo-acktr是核心算法实现,包含了不同强化学习算法的代码。main.py是项目入口,用于启动训练过程。visualize.ipynb提供了一个Jupyter notebook,可用于查看训练结果的可视化。
2. 项目启动文件介绍
主要入口文件:main.py
main.py 文件是项目的主执行入口,它加载环境(env),初始化代理(agent)并运行训练循环。部分关键代码如下:
import torch
from pytorch_a2c_ppo_acktr import algo, envs, utils
from arguments import get_args
args = get_args()
if args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
device = torch.device("cuda" if args.cuda else "cpu")
...
actor_critic, optimizer, scheduler, start_epoch = train_agent(
args,
device,
actor_critic=actor_critic,
optimizer=optimizer,
scheduler=scheduler,
rollouts=rollouts,
)
# 保存模型
utils.save_on_memory(actor_critic, 'model.pt', args.save_dir)
这里,get_args() 函数用于解析命令行参数,train_agent() 函数则负责整个训练流程。
3. 项目的配置文件介绍
配置文件:run_all.yaml
这个文件提供了示例配置来运行所有的训练任务,你可以根据实际需求修改这些配置。例如:
# General Settings
num_processes: 32
num_steps: 5
gamma: 0.99
use_gae: true
gae_lambda: 0.95
entropy_coef: 0.01
value_loss_coef: 0.5
max_grad_norm: 0.5
lr: 7e-4
eps: 1e-5
num_mini_batch: 4
update_interval: 4
use_linear_lr_decay: True
num_updates: 1000000
# Atari specific settings
clip_range: 0.2
frame_stack: 4
use_proper_time_limits: True
# Environment
env_name: BreakoutNoFrameskip-v4
在这个配置文件中,你可以看到关于num_processes(进程数),gamma(折扣因子),entropy_coef(熵正则化系数)等关键参数的设定。env_name定义了使用的Atari游戏环境,可以更改为其他支持的游戏。
使用配置文件
在运行时,通过以下命令指定配置文件:
python main.py --config_file path/to/run_all.yaml
务必替换path/to/run_all.yaml为你实际的配置文件路径。
至此,你应该对PyTorch-A2C-PPO-ACKTR-GAIL项目有了基础了解,可以根据提供的信息进行安装和运行。如果有进一步的问题,欢迎继续提问。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Visual Studio 2015企业版中文版下载安装完全指南 - 专业开发工具必备资源 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 开源电子设计自动化利器:KiCad EDA全方位使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
301
2.65 K
Ascend Extension for PyTorch
Python
130
152
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
457
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
196
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
613
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.42 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205