ZMK固件中解决编码器误触发问题的技术方案
2025-06-25 13:34:15作者:韦蓉瑛
问题背景
在使用ZMK固件为键盘添加鼠标滚轮编码器时,开发者遇到了一个常见但令人困扰的问题:当向一个方向滚动编码器时,系统会错误地同时触发两个方向的信号(0和1)。这种误触发行为会影响用户体验和功能可靠性。
问题分析
编码器的工作原理是通过两个相位差90度的信号(A相和B相)来判断旋转方向。理想情况下:
- 顺时针旋转时,信号变化顺序应为A相先变化,然后B相变化
 - 逆时针旋转时,信号变化顺序相反
 
当出现两个方向信号同时被触发的情况时,通常与以下因素有关:
- 信号消抖处理不足
 - 分辨率设置不当
 - 物理接触不良
 - 固件配置参数不匹配
 
解决方案
关键配置参数调整
在ZMK固件中,有两个关键参数需要特别注意:
steps参数:定义编码器每转的物理步数triggers-per-rotation参数:定义每转触发的事件数
经过实践验证,以下配置组合可以解决误触发问题:
right_encoder: encoder_right {
    compatible = "alps,ec11";
    a-gpios = <&pro_micro 3 (GPIO_ACTIVE_HIGH | GPIO_PULL_UP)>;
    b-gpios = <&pro_micro 2 (GPIO_ACTIVE_HIGH | GPIO_PULL_UP)>;
    steps = <48>; // 或96
    status = "okay";
};
sensors: sensors {
    compatible = "zmk,keymap-sensors";
    sensors = <&right_encoder>;
    triggers-per-rotation = <24>;
};
参数选择原则
- 
物理步数与触发数的比例:保持2:1或4:1的比例关系
- 当
triggers-per-rotation = <24>时,steps应设为48或96 
 - 当
 - 
分辨率匹配:确保固件配置与编码器物理特性匹配
- EC11编码器常见每转物理步数为12/24/30等
 - 通过适当提高steps值可以提高识别精度
 
 - 
信号稳定性:较高的steps值可以提供更好的噪声过滤
 
实现原理
这种配置有效的根本原因在于:
- 采样密度增加:提高steps值相当于增加了采样点,使固件能更准确地识别旋转方向
 - 滤波效果增强:更多的采样点可以平滑掉接触抖动带来的噪声
 - 事件触发同步:保持steps与triggers-per-rotation的整数倍关系,确保事件触发时机准确
 
实践建议
- 
对于EC11编码器,建议从以下配置开始测试:
- steps = 48
 - triggers-per-rotation = 24
 
 - 
如果仍有误触发,可以尝试:
- 进一步提高steps值(如96)
 - 检查硬件连接是否牢固
 - 确保GPIO引脚配置了上拉电阻
 
 - 
对于不同型号编码器,需要根据其规格书调整参数:
- 每转物理步数
 - 信号电气特性
 - 机械结构特点
 
 
总结
通过合理配置ZMK固件中的编码器参数,特别是steps和triggers-per-rotation的比值关系,可以有效解决编码器误触发问题。这一解决方案不仅适用于鼠标滚轮编码器,也适用于其他旋转编码器的应用场景。开发者应根据具体硬件特性,通过实验找到最优参数组合,以获得稳定可靠的编码器输入体验。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447