r77-rootkit项目中的AMSI绕过技术分析
2025-07-06 16:22:51作者:殷蕙予
AMSI绕过机制概述
AMSI(Antimalware Scan Interface)是微软开发的一套反恶意软件扫描接口,它允许应用程序和服务与已安装的反恶意软件产品集成。在PowerShell环境中,AMSI会对脚本内容进行实时扫描,以防止恶意代码执行。r77-rootkit作为一个开源rootkit项目,需要有效绕过AMSI检测才能实现其功能。
常见的AMSI绕过技术
1. .NET反射绕过法
通过反射修改System.Management.Automation.AmsiUtils类中的amsiInitFailed字段值是一种常见的AMSI绕过方法。这种方法的核心代码如下:
[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFailed','NonPublic,Static').SetValue($null,$true)
然而,微软已经对这种直接的方法添加了签名检测。为了绕过检测,可以修改代码结构,例如:
[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFailed','NonPublic,Static').SetValue([System.Management.Automation.Language.NullString]::Value,$true)
这种修改可以暂时绕过检测,但效果有限。
2. AmsiScanBuffer函数修补
更彻底的绕过方法是直接修改amsi.dll中的AmsiScanBuffer函数,使其直接返回而不执行扫描。这种方法需要:
- 获取AmsiScanBuffer函数地址
- 修改函数内存权限
- 写入返回指令
这种方法效果更好,但实现代码需要高度混淆以避免被检测。
技术限制与挑战
1. 签名检测的演进
微软不断更新AMSI的签名检测机制,使得公开的绕过方法很快失效。特别是:
- 特定代码模式的检测(如SetValue(true))
- 硬件断点和VEH Hook等调试技术的检测
- .NET编译器行为的监控
2. 执行上下文的影响
测试表明,.NET反射绕过法在不同执行上下文中的效果不同:
- 单独执行可以绕过部分检测
- 与恶意代码在同一行执行时可能仍然触发检测
3. 开源项目的特殊挑战
对于r77-rootkit这样的开源项目:
- 公开的绕过代码会迅速被反病毒厂商加入特征库
- 需要用户自行修改和混淆代码才能维持有效性
- 静态检测和动态检测需要不同的应对策略
实用建议
- 代码混淆:对绕过代码进行深度混淆,避免使用已知的模式
- 私有修改:不要依赖公开的绕过代码,应自行开发私有版本
- 多层防御:结合多种绕过技术,提高成功率
- 持续测试:定期测试绕过方法的有效性,及时调整策略
结论
AMSI绕过是一场持续的技术对抗。对于r77-rootkit这样的项目,有效的绕过策略需要结合技术创新和操作安全。公开代码库中维护绕过方法效果有限,最佳实践是鼓励用户根据基本原理开发私有实现,并保持对最新防御机制的了解。理解AMSI的工作原理和检测机制,才能开发出更持久有效的绕过技术。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26