r77-rootkit项目中的AMSI绕过技术分析
2025-07-06 23:06:44作者:殷蕙予
AMSI绕过机制概述
AMSI(Antimalware Scan Interface)是微软开发的一套反恶意软件扫描接口,它允许应用程序和服务与已安装的反恶意软件产品集成。在PowerShell环境中,AMSI会对脚本内容进行实时扫描,以防止恶意代码执行。r77-rootkit作为一个开源rootkit项目,需要有效绕过AMSI检测才能实现其功能。
常见的AMSI绕过技术
1. .NET反射绕过法
通过反射修改System.Management.Automation.AmsiUtils类中的amsiInitFailed字段值是一种常见的AMSI绕过方法。这种方法的核心代码如下:
[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFailed','NonPublic,Static').SetValue($null,$true)
然而,微软已经对这种直接的方法添加了签名检测。为了绕过检测,可以修改代码结构,例如:
[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFailed','NonPublic,Static').SetValue([System.Management.Automation.Language.NullString]::Value,$true)
这种修改可以暂时绕过检测,但效果有限。
2. AmsiScanBuffer函数修补
更彻底的绕过方法是直接修改amsi.dll中的AmsiScanBuffer函数,使其直接返回而不执行扫描。这种方法需要:
- 获取AmsiScanBuffer函数地址
- 修改函数内存权限
- 写入返回指令
这种方法效果更好,但实现代码需要高度混淆以避免被检测。
技术限制与挑战
1. 签名检测的演进
微软不断更新AMSI的签名检测机制,使得公开的绕过方法很快失效。特别是:
- 特定代码模式的检测(如SetValue(true))
- 硬件断点和VEH Hook等调试技术的检测
- .NET编译器行为的监控
2. 执行上下文的影响
测试表明,.NET反射绕过法在不同执行上下文中的效果不同:
- 单独执行可以绕过部分检测
- 与恶意代码在同一行执行时可能仍然触发检测
3. 开源项目的特殊挑战
对于r77-rootkit这样的开源项目:
- 公开的绕过代码会迅速被反病毒厂商加入特征库
- 需要用户自行修改和混淆代码才能维持有效性
- 静态检测和动态检测需要不同的应对策略
实用建议
- 代码混淆:对绕过代码进行深度混淆,避免使用已知的模式
- 私有修改:不要依赖公开的绕过代码,应自行开发私有版本
- 多层防御:结合多种绕过技术,提高成功率
- 持续测试:定期测试绕过方法的有效性,及时调整策略
结论
AMSI绕过是一场持续的技术对抗。对于r77-rootkit这样的项目,有效的绕过策略需要结合技术创新和操作安全。公开代码库中维护绕过方法效果有限,最佳实践是鼓励用户根据基本原理开发私有实现,并保持对最新防御机制的了解。理解AMSI的工作原理和检测机制,才能开发出更持久有效的绕过技术。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882