compiler-rt 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
compiler-rt 是一个与 LLVM 项目紧密相关的开源项目,它提供了一组运行时库,这些库为 LLVM 编译器生成的代码提供支持。这些库包括用于安全检查、精确的内存操作、异常处理和其他运行时支持的组件。compiler-rt 的目的是增强程序的可靠性、安全性和性能。
compiler-rt 主要使用 C 和 C++ 编程语言开发。
2. 项目使用的关键技术和框架
compiler-rt 使用的关键技术包括:
- 内存安全检查:防止缓冲区溢出和其他潜在的内存错误。
- 精确的内存操作:提供对内存的精细控制,用于优化和调试目的。
- 异常处理:支持 C++ 异常处理机制。
- 内置函数:为编译器内置的函数提供运行时支持。
此外,compiler-rt 依赖于 LLVM 项目的一些组件,并与 LLVM 构建系统兼容。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装 compiler-rt 之前,请确保您的系统满足以下要求:
- 操作系统:Linux 或 macOS
- 编译工具:GCC 或 Clang
- 依赖:LLVM 项目源码
您需要从源代码构建 LLVM,因为 compiler-rt 需要与特定版本的 LLVM 配合使用。
安装步骤
-
获取 LLVM 和 compiler-rt 源码:
首先,您需要克隆 LLVM 和 compiler-rt 的源码仓库。以下命令假设您使用的是 Git 版本控制系统:
git clone https://github.com/llvm-mirror/llvm.git git clone https://github.com/llvm-mirror/compiler-rt.git -
安装依赖:
根据您的操作系统,您可能需要安装一些依赖项。对于大多数 Linux 发行版,您可以使用以下命令安装:
sudo apt-get install build-essential python3对于 macOS,您可能需要安装 Command Line Tools 和 Xcode。
-
配置 LLVM 构建目录:
在 LLVM 源码目录中创建一个构建目录,并配置构建系统:
cd llvm mkdir build && cd build cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release .. -
构建 LLVM:
在构建目录中,使用以下命令构建 LLVM:
make这可能需要一些时间,具体取决于您的计算机性能。
-
配置 compiler-rt:
接下来,配置 compiler-rt,确保它指向您的 LLVM 构建目录:
cd ../compiler-rt mkdir build && cd build cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release -DLLVM_PATH=../../llvm/build .. -
构建 compiler-rt:
最后,构建 compiler-rt:
make -
安装 compiler-rt:
构建完成后,您可以使用以下命令安装 compiler-rt:
make install默认情况下,它将被安装到
/usr/local目录中。
完成以上步骤后,您应该已经成功安装了 compiler-rt。现在您可以开始使用它来增强您的编译器和运行时支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00