Astronomer Airflow Chart 开源项目最佳实践教程
1. 项目介绍
Astronomer Airflow Chart 是一个开源项目,它是基于 Apache Airflow 的 Kubernetes Helm 图表,用于在 Kubernetes 集群上部署和管理 Airflow。它为用户提供了简单且灵活的方式来部署 Airflow,并支持自定义配置,使得 Airflow 的部署过程更为便捷。
2. 项目快速启动
在 Kubernetes 环境中启动 Astronomer Airflow Chart 的步骤如下:
首先,确保您的 Kubernetes 集群已经安装了 Helm。
# 添加 Helm 仓库
helm repo add astronomer https://helm.astronomer.io/
# 更新 Helm 仓库
helm repo update
# 使用 Helm 安装 Airflow
helm install my-airflow astronomer/airflow
安装过程中,您可以传递自定义的 values.yaml 文件来覆盖默认的配置。
# 使用自定义配置文件安装
helm install my-airflow -f my-values.yaml astronomer/airflow
3. 应用案例和最佳实践
-
自定义 DAGs 存储位置:您可以通过配置
airflow(pdev)的dagsVolume来指定 DAGs 的存储位置,以便于版本控制和备份。 -
持久化数据存储:配置
persistence选项以确保元数据数据库和其他持久化数据不会在重启时丢失。 -
资源限制:在
limits和requests中为 Airflow 组件设置资源限制和请求,以确保它们不会耗尽集群资源。 -
使用 Init 容器:对于需要执行一些初始化任务的情况,可以使用 Init 容器来准备环境。
-
配置 Prometheus 监控:集成 Prometheus 以监控 Airflow 的性能和状态。
4. 典型生态项目
Astronomer Airflow Chart 可以与其他开源项目结合使用,以下是一些典型的生态项目:
-
Ambassador: 作为 API 网关,Ambassador 可以与 Airflow 结合,提供 DAGs 的 HTTP 访问。
-
Grafana: 结合 Prometheus,Grafana 可以用于可视化 Airflow 的监控数据。
-
Fluentd: 用于日志收集和聚合,Fluentd 可以帮助您管理 Airflow 的日志数据。
通过以上最佳实践,您可以更加高效地使用 Astronomer Airflow Chart 来部署和运行 Airflow。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00