Astronomer Airflow Chart 开源项目最佳实践教程
1. 项目介绍
Astronomer Airflow Chart 是一个开源项目,它是基于 Apache Airflow 的 Kubernetes Helm 图表,用于在 Kubernetes 集群上部署和管理 Airflow。它为用户提供了简单且灵活的方式来部署 Airflow,并支持自定义配置,使得 Airflow 的部署过程更为便捷。
2. 项目快速启动
在 Kubernetes 环境中启动 Astronomer Airflow Chart 的步骤如下:
首先,确保您的 Kubernetes 集群已经安装了 Helm。
# 添加 Helm 仓库
helm repo add astronomer https://helm.astronomer.io/
# 更新 Helm 仓库
helm repo update
# 使用 Helm 安装 Airflow
helm install my-airflow astronomer/airflow
安装过程中,您可以传递自定义的 values.yaml 文件来覆盖默认的配置。
# 使用自定义配置文件安装
helm install my-airflow -f my-values.yaml astronomer/airflow
3. 应用案例和最佳实践
-
自定义 DAGs 存储位置:您可以通过配置
airflow(pdev)的dagsVolume来指定 DAGs 的存储位置,以便于版本控制和备份。 -
持久化数据存储:配置
persistence选项以确保元数据数据库和其他持久化数据不会在重启时丢失。 -
资源限制:在
limits和requests中为 Airflow 组件设置资源限制和请求,以确保它们不会耗尽集群资源。 -
使用 Init 容器:对于需要执行一些初始化任务的情况,可以使用 Init 容器来准备环境。
-
配置 Prometheus 监控:集成 Prometheus 以监控 Airflow 的性能和状态。
4. 典型生态项目
Astronomer Airflow Chart 可以与其他开源项目结合使用,以下是一些典型的生态项目:
-
Ambassador: 作为 API 网关,Ambassador 可以与 Airflow 结合,提供 DAGs 的 HTTP 访问。
-
Grafana: 结合 Prometheus,Grafana 可以用于可视化 Airflow 的监控数据。
-
Fluentd: 用于日志收集和聚合,Fluentd 可以帮助您管理 Airflow 的日志数据。
通过以上最佳实践,您可以更加高效地使用 Astronomer Airflow Chart 来部署和运行 Airflow。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0132
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00