Astronomer Airflow Chart 开源项目最佳实践教程
1. 项目介绍
Astronomer Airflow Chart 是一个开源项目,它是基于 Apache Airflow 的 Kubernetes Helm 图表,用于在 Kubernetes 集群上部署和管理 Airflow。它为用户提供了简单且灵活的方式来部署 Airflow,并支持自定义配置,使得 Airflow 的部署过程更为便捷。
2. 项目快速启动
在 Kubernetes 环境中启动 Astronomer Airflow Chart 的步骤如下:
首先,确保您的 Kubernetes 集群已经安装了 Helm。
# 添加 Helm 仓库
helm repo add astronomer https://helm.astronomer.io/
# 更新 Helm 仓库
helm repo update
# 使用 Helm 安装 Airflow
helm install my-airflow astronomer/airflow
安装过程中,您可以传递自定义的 values.yaml
文件来覆盖默认的配置。
# 使用自定义配置文件安装
helm install my-airflow -f my-values.yaml astronomer/airflow
3. 应用案例和最佳实践
-
自定义 DAGs 存储位置:您可以通过配置
airflow(pdev)
的dagsVolume
来指定 DAGs 的存储位置,以便于版本控制和备份。 -
持久化数据存储:配置
persistence
选项以确保元数据数据库和其他持久化数据不会在重启时丢失。 -
资源限制:在
limits
和requests
中为 Airflow 组件设置资源限制和请求,以确保它们不会耗尽集群资源。 -
使用 Init 容器:对于需要执行一些初始化任务的情况,可以使用 Init 容器来准备环境。
-
配置 Prometheus 监控:集成 Prometheus 以监控 Airflow 的性能和状态。
4. 典型生态项目
Astronomer Airflow Chart 可以与其他开源项目结合使用,以下是一些典型的生态项目:
-
Ambassador: 作为 API 网关,Ambassador 可以与 Airflow 结合,提供 DAGs 的 HTTP 访问。
-
Grafana: 结合 Prometheus,Grafana 可以用于可视化 Airflow 的监控数据。
-
Fluentd: 用于日志收集和聚合,Fluentd 可以帮助您管理 Airflow 的日志数据。
通过以上最佳实践,您可以更加高效地使用 Astronomer Airflow Chart 来部署和运行 Airflow。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









