解决HuggingFace Evaluate在多GPU训练中的锁获取问题
2025-07-03 15:59:02作者:盛欣凯Ernestine
问题背景
在使用HuggingFace Transformers库进行多GPU模型训练时,许多开发者会遇到Evaluate模块的锁获取问题。特别是在单节点多GPU环境下运行run_clm.py等示例脚本时,当评估循环完成后,训练任务会因锁获取失败而中断。
错误现象
典型的错误信息会显示类似以下内容:
ValueError: Expected to find locked file /path/to/cache/metrics/accuracy/default/xxx.arrow.lock from process X but it doesn't exist.
尽管检查缓存目录确认锁文件确实存在,但系统仍报告找不到这些文件,导致训练过程中断。
问题根源
这个问题主要源于Evaluate模块在多进程环境下的文件锁同步机制。当使用多GPU进行训练时:
- 每个GPU进程都会尝试创建和访问自己的锁文件
- 进程间需要协调这些锁文件的创建和使用
- 当前的同步机制在某些环境下(特别是SLURM管理的单节点多GPU环境)可能出现竞态条件
临时解决方案
目前有两种可行的临时解决方案:
方案一:使用keep_in_memory参数
metric = evaluate.load(
"accuracy",
experiment_id=training_args.run_name,
keep_in_memory=True
)
这个方案通过将指标数据保留在内存中,完全绕过了文件锁机制。优点是简单直接,缺点是对于计算复杂的指标或需要持久化的情况不适用。
方案二:简化进程配置
metric = evaluate.load(
"accuracy",
experiment_id=training_args.run_name
)
不指定num_process等参数有时可以让代码运行,但需要注意这可能导致指标计算不准确。
深入分析
在多GPU训练环境中,Evaluate模块的设计初衷是通过文件锁机制实现进程间同步:
- 每个进程会创建自己的锁文件
- 主进程等待所有从进程完成锁文件创建
- 然后进行指标计算和数据聚合
但在实际应用中,特别是在某些集群环境下,文件系统的延迟或SLURM的任务调度可能导致进程间对锁文件状态的判断出现偏差,从而引发错误。
最佳实践建议
- 对于单节点多GPU训练,优先考虑使用
keep_in_memory=True参数 - 对于生产环境,建议监控文件系统性能,确保NFS或其他共享文件系统的响应速度
- 定期清理旧的指标缓存文件,避免积累过多文件导致性能下降
- 关注HuggingFace官方更新,这个问题可能会在未来的版本中得到修复
总结
Evaluate模块在多GPU环境下的锁获取问题是一个已知的限制,通过合理使用内存缓存或简化配置可以暂时规避。开发者需要根据具体场景选择最适合的解决方案,同时关注官方更新以获取更完善的分布式支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136