BLIS项目中Haswell内核在GCC 15下的编译问题解析
问题背景
BLIS(BLAS-like Library Instantiation Software)是一个高性能的基础线性代数子程序库实现。近期在x86_64架构下使用GCC 15预发布版本编译时,Haswell内核出现了编译错误。这个问题主要影响gemmsup(GEMM小矩阵优化)内核的编译过程。
错误现象
编译过程中,GCC 15报出以下关键错误信息:
error: bp cannot be used in 'asm' here
这个错误出现在多个Haswell内核文件中,包括:
- bli_gemmsup_rv_haswell_asm_d6x8m.c
- bli_gemmsup_rv_haswell_asm_d6x8n.c
- bli_gemmsup_rv_haswell_asm_s6x16m.c
- bli_gemmsup_rv_haswell_asm_s6x16n.c
错误导致编译过程终止,无法生成目标文件。
技术分析
根本原因
这个问题源于GCC 15对内联汇编处理的改进。具体来说:
-
rbp寄存器限制:GCC 15加强了对基指针寄存器(rbp)使用的限制,防止在内联汇编中不当使用这个寄存器。
-
向量化优化冲突:GCC的树SLP(Superword Level Parallelism)向量化优化与内核代码中的内联汇编使用方式产生了冲突。
影响范围
这个问题主要影响:
- 使用Haswell微架构优化的内核代码
- 涉及小矩阵乘法优化的gemmsup内核
- 使用GCC 15及以上版本编译的环境
解决方案
开发团队评估了多种解决方案后,最终确定了以下修复方案:
方案一:禁用SLP向量化优化
通过添加编译指示:
#pragma GCC optimize("-fno-tree-slp-vectorize")
这个方案直接解决了GCC 15的向量化优化与内联汇编的冲突问题。
方案二:移除rbp寄存器使用
另一种考虑是彻底移除内核代码中对rbp寄存器的使用,但这种方法需要更广泛的代码修改。
验证结果
修复方案已在以下环境中验证通过:
- Zen3架构处理器(使用Haswell内核)
- Coffee Lake架构处理器(原生Haswell微架构)
- GCC 15.1.1版本
测试结果表明:
- 编译过程顺利完成
- 快速测试套件全部通过
- 性能表现符合预期
技术启示
这个问题为我们提供了几个重要的技术启示:
-
编译器兼容性:高性能计算库需要密切关注编译器版本的更新,特别是对低层次优化的改进。
-
寄存器使用规范:在内联汇编中应谨慎使用特定寄存器,特别是像rbp这样的特殊用途寄存器。
-
优化控制:有时需要精细控制编译器的优化行为,以平衡性能与兼容性。
结论
BLIS团队通过添加特定的编译优化控制指令,有效解决了Haswell内核在GCC 15下的编译问题。这个修复既保持了代码的兼容性,又确保了性能不受影响,体现了高性能计算库开发中对细节的精确把控。
对于使用BLIS库的开发者,建议在升级到GCC 15时同步更新BLIS代码库,以确保编译过程的顺利进行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00