BLIS项目中Haswell内核在GCC 15下的编译问题解析
问题背景
BLIS(BLAS-like Library Instantiation Software)是一个高性能的基础线性代数子程序库实现。近期在x86_64架构下使用GCC 15预发布版本编译时,Haswell内核出现了编译错误。这个问题主要影响gemmsup(GEMM小矩阵优化)内核的编译过程。
错误现象
编译过程中,GCC 15报出以下关键错误信息:
error: bp cannot be used in 'asm' here
这个错误出现在多个Haswell内核文件中,包括:
- bli_gemmsup_rv_haswell_asm_d6x8m.c
- bli_gemmsup_rv_haswell_asm_d6x8n.c
- bli_gemmsup_rv_haswell_asm_s6x16m.c
- bli_gemmsup_rv_haswell_asm_s6x16n.c
错误导致编译过程终止,无法生成目标文件。
技术分析
根本原因
这个问题源于GCC 15对内联汇编处理的改进。具体来说:
-
rbp寄存器限制:GCC 15加强了对基指针寄存器(rbp)使用的限制,防止在内联汇编中不当使用这个寄存器。
-
向量化优化冲突:GCC的树SLP(Superword Level Parallelism)向量化优化与内核代码中的内联汇编使用方式产生了冲突。
影响范围
这个问题主要影响:
- 使用Haswell微架构优化的内核代码
- 涉及小矩阵乘法优化的gemmsup内核
- 使用GCC 15及以上版本编译的环境
解决方案
开发团队评估了多种解决方案后,最终确定了以下修复方案:
方案一:禁用SLP向量化优化
通过添加编译指示:
#pragma GCC optimize("-fno-tree-slp-vectorize")
这个方案直接解决了GCC 15的向量化优化与内联汇编的冲突问题。
方案二:移除rbp寄存器使用
另一种考虑是彻底移除内核代码中对rbp寄存器的使用,但这种方法需要更广泛的代码修改。
验证结果
修复方案已在以下环境中验证通过:
- Zen3架构处理器(使用Haswell内核)
- Coffee Lake架构处理器(原生Haswell微架构)
- GCC 15.1.1版本
测试结果表明:
- 编译过程顺利完成
- 快速测试套件全部通过
- 性能表现符合预期
技术启示
这个问题为我们提供了几个重要的技术启示:
-
编译器兼容性:高性能计算库需要密切关注编译器版本的更新,特别是对低层次优化的改进。
-
寄存器使用规范:在内联汇编中应谨慎使用特定寄存器,特别是像rbp这样的特殊用途寄存器。
-
优化控制:有时需要精细控制编译器的优化行为,以平衡性能与兼容性。
结论
BLIS团队通过添加特定的编译优化控制指令,有效解决了Haswell内核在GCC 15下的编译问题。这个修复既保持了代码的兼容性,又确保了性能不受影响,体现了高性能计算库开发中对细节的精确把控。
对于使用BLIS库的开发者,建议在升级到GCC 15时同步更新BLIS代码库,以确保编译过程的顺利进行。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









