快速高效的边缘保护滤波器——Recursive Bilateral Filtering
Recursive Bilateral Filtering 是一个由 Qingxiong Yang 开发的开源项目,它提供了一种快速的高维度滤波解决方案,特别适用于图像处理领域。这个库以其线性的时间复杂度和显著的性能优势,与同类边缘保持过滤方法相比,显得尤为出色。
项目介绍
Recursive Bilateral Filtering 库实现了递归双边滤波算法,能够在保留图像细节的同时平滑噪声。与传统的双边滤波相比,该算法在处理大尺寸和多维数据时速度更快,如对一张1百万像素的彩色图片进行处理仅需约43毫秒(基于 i7 1.8GHz 处理器和 4GB 内存)。这种高效性能得益于其独特的计算优化策略。
项目技术分析
该项目的核心是递归双边滤波算法,它的计算复杂度对于输入大小和维度都是线性的。这意味着,随着图像尺寸或颜色通道数增加,处理时间将成比例地增长,而非指数级。相比于 Fast high-dimensional filtering using the permutohedral lattice 方法,Recursive Bilateral Filtering 约快18倍;而相对于 Gaussian kd-trees,其速度可以达到惊人的86倍。
项目及技术应用场景
Recursive Bilateral Filtering 技术广泛应用于图像平滑、去噪以及增强等场景。由于其对边缘的保护特性,它非常适合于那些要求保留图像锐利边界的场合,例如摄影后期处理、实时视频滤波、3D扫描数据平滑等。下表展示了原图与其他几种滤波方法处理后的效果对比,从中可以看出 Recursive Bilateral Filtering 在保持边缘清晰度方面的优秀表现:
| 原始图片 | OpenCV 的BF (896ms) | RecursiveBF (18ms) |
|---|---|---|
| 高斯模糊 | 中值模糊 | | | |
项目特点
- 高性能:线性时间复杂度,处理速度快。
- 边缘保护:能有效保护图像边缘,避免平滑过程中细节损失。
- 易用性强:提供轻量级C++库,易于集成到现有项目中。
- 可定制化:适应不同尺寸和维度的输入数据,应用范围广。
为了了解更多关于该算法的详细信息,可以参考原始论文,同时也鼓励引用这个宝贵的开源资源:
[原始论文引用]
@inproceedings{yang2012recursive,
title={Recursive bilateral filtering},
author={Yang, Qingxiong},
booktitle={European Conference on Computer Vision},
pages={399--413},
year={2012},
organization={Springer}
}
[GitHub仓库引用]
@misc{ming2017recursive,
author = {Ming Yang},
title = {A lightweight C++ library for recursive bilateral filtering},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ufoym/RecursiveBF}}
}
如果你正在寻找一种能够兼顾效率和质量的图像处理解决方案,Recursive Bilateral Filtering 绝对值得尝试。立即加入我们的社区,体验快速且精确的图像滤波吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00