首页
/ 快速高效的边缘保护滤波器——Recursive Bilateral Filtering

快速高效的边缘保护滤波器——Recursive Bilateral Filtering

2024-05-20 20:59:04作者:谭伦延

Recursive Bilateral Filtering 是一个由 Qingxiong Yang 开发的开源项目,它提供了一种快速的高维度滤波解决方案,特别适用于图像处理领域。这个库以其线性的时间复杂度和显著的性能优势,与同类边缘保持过滤方法相比,显得尤为出色。

项目介绍

Recursive Bilateral Filtering 库实现了递归双边滤波算法,能够在保留图像细节的同时平滑噪声。与传统的双边滤波相比,该算法在处理大尺寸和多维数据时速度更快,如对一张1百万像素的彩色图片进行处理仅需约43毫秒(基于 i7 1.8GHz 处理器和 4GB 内存)。这种高效性能得益于其独特的计算优化策略。

项目技术分析

该项目的核心是递归双边滤波算法,它的计算复杂度对于输入大小和维度都是线性的。这意味着,随着图像尺寸或颜色通道数增加,处理时间将成比例地增长,而非指数级。相比于 Fast high-dimensional filtering using the permutohedral lattice 方法,Recursive Bilateral Filtering 约快18倍;而相对于 Gaussian kd-trees,其速度可以达到惊人的86倍。

项目及技术应用场景

Recursive Bilateral Filtering 技术广泛应用于图像平滑、去噪以及增强等场景。由于其对边缘的保护特性,它非常适合于那些要求保留图像锐利边界的场合,例如摄影后期处理、实时视频滤波、3D扫描数据平滑等。下表展示了原图与其他几种滤波方法处理后的效果对比,从中可以看出 Recursive Bilateral Filtering 在保持边缘清晰度方面的优秀表现:

原始图片 OpenCV 的BF (896ms) RecursiveBF (18ms)

| 高斯模糊 | 中值模糊 | | | |

项目特点

  • 高性能:线性时间复杂度,处理速度快。
  • 边缘保护:能有效保护图像边缘,避免平滑过程中细节损失。
  • 易用性强:提供轻量级C++库,易于集成到现有项目中。
  • 可定制化:适应不同尺寸和维度的输入数据,应用范围广。

为了了解更多关于该算法的详细信息,可以参考原始论文,同时也鼓励引用这个宝贵的开源资源:

[原始论文引用]
@inproceedings{yang2012recursive,
    title={Recursive bilateral filtering},
    author={Yang, Qingxiong},
    booktitle={European Conference on Computer Vision},
    pages={399--413},
    year={2012},
    organization={Springer}
}

[GitHub仓库引用]
@misc{ming2017recursive,
    author = {Ming Yang},
    title = {A lightweight C++ library for recursive bilateral filtering},
    year = {2017},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/ufoym/RecursiveBF}}
}

如果你正在寻找一种能够兼顾效率和质量的图像处理解决方案,Recursive Bilateral Filtering 绝对值得尝试。立即加入我们的社区,体验快速且精确的图像滤波吧!

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
61
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133