快速高效的边缘保护滤波器——Recursive Bilateral Filtering
Recursive Bilateral Filtering 是一个由 Qingxiong Yang 开发的开源项目,它提供了一种快速的高维度滤波解决方案,特别适用于图像处理领域。这个库以其线性的时间复杂度和显著的性能优势,与同类边缘保持过滤方法相比,显得尤为出色。
项目介绍
Recursive Bilateral Filtering 库实现了递归双边滤波算法,能够在保留图像细节的同时平滑噪声。与传统的双边滤波相比,该算法在处理大尺寸和多维数据时速度更快,如对一张1百万像素的彩色图片进行处理仅需约43毫秒(基于 i7 1.8GHz 处理器和 4GB 内存)。这种高效性能得益于其独特的计算优化策略。
项目技术分析
该项目的核心是递归双边滤波算法,它的计算复杂度对于输入大小和维度都是线性的。这意味着,随着图像尺寸或颜色通道数增加,处理时间将成比例地增长,而非指数级。相比于 Fast high-dimensional filtering using the permutohedral lattice 方法,Recursive Bilateral Filtering 约快18倍;而相对于 Gaussian kd-trees,其速度可以达到惊人的86倍。
项目及技术应用场景
Recursive Bilateral Filtering 技术广泛应用于图像平滑、去噪以及增强等场景。由于其对边缘的保护特性,它非常适合于那些要求保留图像锐利边界的场合,例如摄影后期处理、实时视频滤波、3D扫描数据平滑等。下表展示了原图与其他几种滤波方法处理后的效果对比,从中可以看出 Recursive Bilateral Filtering 在保持边缘清晰度方面的优秀表现:
原始图片 | OpenCV 的BF (896ms) | RecursiveBF (18ms) |
---|---|---|
| 高斯模糊 | 中值模糊 | | | |
项目特点
- 高性能:线性时间复杂度,处理速度快。
- 边缘保护:能有效保护图像边缘,避免平滑过程中细节损失。
- 易用性强:提供轻量级C++库,易于集成到现有项目中。
- 可定制化:适应不同尺寸和维度的输入数据,应用范围广。
为了了解更多关于该算法的详细信息,可以参考原始论文,同时也鼓励引用这个宝贵的开源资源:
[原始论文引用]
@inproceedings{yang2012recursive,
title={Recursive bilateral filtering},
author={Yang, Qingxiong},
booktitle={European Conference on Computer Vision},
pages={399--413},
year={2012},
organization={Springer}
}
[GitHub仓库引用]
@misc{ming2017recursive,
author = {Ming Yang},
title = {A lightweight C++ library for recursive bilateral filtering},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ufoym/RecursiveBF}}
}
如果你正在寻找一种能够兼顾效率和质量的图像处理解决方案,Recursive Bilateral Filtering 绝对值得尝试。立即加入我们的社区,体验快速且精确的图像滤波吧!
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
项目优选









