IREE编译器在CPU目标转换过程中的崩溃问题分析
问题背景
在IREE编译器项目中,开发者遇到了一个在将Stream方言转换为HAL方言时发生的崩溃问题。该问题出现在编译模型为CPU目标时,而同样的模型编译为HIP目标则能正常工作。
问题现象
当使用IREE编译器将MLIR模型编译为CPU目标时,ConvertToHALPass转换过程中发生了段错误。从堆栈跟踪可以看出,问题出现在尝试查找已转换的HAL可执行入口点时。
技术分析
根本原因
问题的核心在于编译器配置不当。开发者虽然指定了目标设备为本地执行(--iree-hal-target-device=local
),但没有指定本地执行的后端(--iree-hal-local-target-device-backends=llvm-cpu
)。这导致编译器无法正确将可执行部分转换为HAL可执行格式。
具体表现
在转换过程中,编译器遇到了一个stream.cmd.dispatch
操作,它引用了一个流可执行导出符号。然而,当尝试查找对应的HAL可执行导出操作时失败,因为缺少必要的后端配置,导致可执行部分没有被正确转换。
解决方案
正确的做法是在编译命令中添加本地CPU后端配置:
--iree-hal-local-target-device-backends=llvm-cpu
这将确保编译器能够正确地将流可执行部分转换为HAL可执行格式。
深入理解
IREE编译流程
IREE的编译过程涉及多个层次的方言转换:
- 从高层MLIR操作转换为Stream方言
- 从Stream方言转换为HAL(硬件抽象层)方言
- 最后生成目标特定的代码
转换过程机制
在Stream到HAL的转换过程中:
stream.executable
需要转换为hal.executable
stream.executable.export
需要转换为hal.executable.export
stream.cmd.dispatch
需要转换为hal.command_buffer.dispatch
当缺少目标后端配置时,可执行部分的转换会被跳过,导致后续转换失败。
最佳实践建议
-
明确指定目标后端:在使用IREE编译器时,必须明确指定目标后端,特别是当目标设备为本地执行时。
-
分离设备特定参数:建议将设备特定参数(如HIP相关参数)与模型通用参数分开管理,以提高配置的可读性和可维护性。
-
错误检查:IREE项目已计划改进错误检查机制,在缺少必要后端配置时提前报错,而不是在转换过程中崩溃。
总结
这个案例展示了IREE编译器配置的重要性。正确的后端配置对于确保编译流程的顺利完成至关重要。开发者在针对不同硬件目标编译时,需要特别注意提供完整的目标配置信息,以避免类似的转换失败问题。
对于IREE用户来说,理解编译器各阶段的转换过程和配置要求,能够更有效地诊断和解决编译过程中遇到的问题。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









