LND与CLN互操作性中的INVALID_ONION_HMAC问题分析
2025-05-29 18:21:22作者:彭桢灵Jeremy
问题背景
在闪电网络(Lightning Network)的互操作性测试中,发现了一个涉及LND和Core Lightning(CLN)节点交互的特定场景下出现的INVALID_ONION_HMAC错误。该问题在特定拓扑结构中可稳定复现,表现为支付失败并返回错误信息。
问题现象
当支付路径为"LND发送方 → LND路由节点 → CLN路由节点 → CLN接收方"时,支付会失败并返回INVALID_ONION_HMAC错误。值得注意的是,该问题仅在上述特定节点组合中出现,其他组合如全LND节点、全CLN节点或简单两节点组合均能正常工作。
技术分析
根本原因
经过深入分析,发现问题根源在于LND节点未能正确识别CLN节点的特性支持情况。具体表现为:
- 节点公告缺失:LND节点未能接收到CLN节点的完整节点公告(node announcement),仅获取了通道公告(channel announcement)
 - 特性位假设:当缺少节点公告时,LND会假设目标节点特性位向量为零长度,进而错误判断其支持能力
 - 遗留洋葱格式:基于上述错误假设,LND会使用遗留(legacy)洋葱格式而非现代TLV格式构造支付
 
技术细节
在闪电网络协议中,节点通过特性位(feature bits)声明其支持的功能。其中关键的是TLV洋葱格式支持位。现代实现应始终设置此位,但处理逻辑中存在以下关键点:
- LND在0.18版本前将此特性位设为可选(optional),之后版本设为必需(required)
 - CLN从2022年4月版本开始不再生成遗留格式的洋葱
 - 当LND无法确认对方节点特性时,会保守地假设其仅支持最基础功能
 
解决方案
短期修复
对于当前遇到问题的用户,可以采取以下临时解决方案:
- 确保网络拓扑中所有节点能够正确传播和接收节点公告
 - 升级所有LND节点至最新版本(0.18+),其中已改进特性位处理逻辑
 
长期改进
从协议实现角度,建议采取以下改进措施:
- LND实现中完全移除遗留洋葱格式支持代码
 - 增强节点公告传播的可靠性检查
 - 改进特性位缺失情况下的默认处理逻辑
 
影响评估
该问题主要影响以下场景:
- 混合LND和CLN节点的复杂路由路径
 - 节点公告传播不完整的网络环境
 - 使用较旧版本实现的闪电网络节点
 
对于纯LND或纯CLN网络,以及简单两节点场景,不会出现此问题。
结论
闪电网络作为仍在发展中的技术,不同实现间的互操作性是关键挑战。本次INVALID_ONION_HMAC问题揭示了节点特性协商和向后兼容处理中的潜在缺陷。随着各实现版本的迭代更新和协议标准化推进,预期此类互操作性问题将逐步减少。建议用户保持节点版本更新,并关注实现间的兼容性公告。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443