Rust Book Summary 项目解析:无畏并发编程指南
2025-06-24 10:35:27作者:裘晴惠Vivianne
本文基于 Rust Book Summary 项目中的第16章内容,深入讲解 Rust 语言中并发编程的核心概念和实践方法。Rust 以其"无畏并发"的特性著称,通过所有权系统和类型系统在编译期就能防止数据竞争等问题。
并发编程的挑战
在深入 Rust 并发特性前,我们需要理解并发编程面临的典型问题:
- 竞态条件:线程以不一致的顺序访问数据或资源
- 死锁:两个线程互相等待对方释放资源,导致程序停滞
这些问题在多线程环境中尤为常见,而 Rust 的设计目标就是在编译期就避免这些问题的发生。
Rust 的线程模型
Rust 标准库提供了两种线程模型选择:
-
1:1 模型(原生线程模型):
- 每个语言线程对应一个操作系统线程
- 标准库默认实现
- 优点:更接近操作系统原生行为,性能可预测
-
M:N 模型(绿色线程):
- M 个语言线程运行在 N 个操作系统线程上
- 需要通过第三方库实现(如 tokio)
- 优点:更轻量级,适合高并发场景
线程基础操作
Rust 提供了简洁的线程操作原语:
创建线程
use std::thread;
let handle = thread::spawn(|| {
// 线程执行的代码
});
等待线程完成
handle.join().unwrap();
线程所有权转移
使用 move 关键字将变量所有权转移到线程中:
let v = vec![1, 2, 3];
let handle = thread::spawn(move || {
println!("Vector: {:?}", v); // v 的所有权已转移
});
// 这里不能再使用 v
handle.join().unwrap();
如果不使用 move,编译器会阻止可能导致悬垂引用的代码,这是 Rust 安全并发的重要保障。
线程间通信:消息传递
Rust 采用"不要通过共享内存来通信,而要通过通信来共享内存"的理念,提供了通道(channel)机制:
use std::sync::mpsc; // 多生产者单消费者
let (tx, rx) = mpsc::channel();
thread::spawn(move || {
tx.send("消息".to_string()).unwrap();
});
let received = rx.recv().unwrap();
println!("收到: {}", received);
通道的特性:
- 多生产者,单消费者(mpsc)
- 发送端(tx)和接收端(rx)
- 当任一端被丢弃时,通道自动关闭
- 发送操作会转移所有权,确保线程安全
共享状态并发
虽然消息传递是首选,但 Rust 也支持通过互斥锁(Mutex)共享内存:
use std::sync::{Mutex, Arc};
let counter = Arc::new(Mutex::new(0));
let mut handles = vec![];
for _ in 0..10 {
let counter = Arc::clone(&counter);
let handle = thread::spawn(move || {
let mut num = counter.lock().unwrap();
*num += 1;
});
handles.push(handle);
}
for handle in handles {
handle.join().unwrap();
}
println!("结果: {}", *counter.lock().unwrap()); // 输出 10
关键点:
Arc<T>:原子引用计数,线程安全的智能指针Mutex<T>:提供内部可变性,保证线程安全访问- 必须显式获取和释放锁
- Rust 的类型系统确保你不会忘记加锁
Sync 和 Send 特质
Rust 通过两个标记特质(marker trait)来保证并发安全:
-
Send:
- 表示类型的所有权可以在线程间安全转移
- 大多数 Rust 类型都是 Send
- 例外:如 Rc 不是 Send
-
Sync:
- 表示类型的引用可以安全地在多个线程间共享
- 类型 T 是 Sync 当且仅当 &T 是 Send
- 例如:Mutex 是 Sync
这些特质由编译器自动推导,也可以手动实现(需确保线程安全)。
总结
Rust 的并发模型提供了:
- 安全性:编译时检查避免了数据竞争
- 灵活性:支持消息传递和共享内存两种模式
- 高效性:零成本抽象,性能接近底层实现
通过本章学习,开发者可以掌握 Rust 中安全高效的并发编程方法,充分利用多核处理器的计算能力,而不用担心常见的并发陷阱。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
417
仓颉编程语言运行时与标准库。
Cangjie
130
430