OpenBMB/OmniLMM项目中实现图文穿插推理的技术解析
在OpenBMB/OmniLMM这类多模态大语言模型项目中,实现图文穿插推理是一个关键技术需求。本文将深入探讨如何在不同场景下实现这一功能。
图文穿插推理的两种实现方式
OpenBMB/OmmiLMM项目提供了两种主要的图文穿插推理实现方式,分别适用于不同的使用场景。
API服务器模式
在API服务器模式下,系统会自动处理图像令牌的插入,开发者无需手动指定<image>
标记。这种模式下,图文穿插的实现依赖于消息内容(content)列表的顺序排列。
典型的消息结构如下:
{
"role": "user",
"content": [
{"type": "text", "text": "这里有一张图片"},
{
"type": "image_url",
"image_url": {
"url": "图片URL地址"
}
},
{"type": "text", "text": "请描述这张图片"}
]
}
这种结构会被自动解析为"文-图-文"的穿插形式。开发者只需按照期望的图文顺序排列content列表中的元素即可实现任意形式的图文穿插。
离线推理模式
在离线推理场景下,开发者需要显式地使用<image>
标记来指示图像位置,并通过multi_modal_data参数提供对应的图像数据。
典型实现方式如下:
messages = [{
"role": "user",
"content": "(<image>./</image>)\nWhat is the content of this image?"
}]
inputs = {
"prompt": tokenizer.apply_chat_template(messages, tokenize=False),
"multi_modal_data": {
"image": image_data
}
}
在这种模式下,<image>
标记的数量必须与multi_modal_data中提供的图像数量严格匹配,系统会按照顺序将图像插入到对应的标记位置。
技术实现原理
这两种模式背后的技术原理有所不同:
-
API服务器模式:服务器端会自动解析content列表,当遇到image_url类型时,会自动在内部表示中插入图像令牌,并处理图像下载和编码。这种方式的优点是开发者无需关心令牌细节,缺点是灵活性稍低。
-
离线推理模式:开发者需要显式控制图像令牌的位置,这种方式提供了更精细的控制能力,适合需要精确控制图像位置的复杂场景。但需要开发者自行确保令牌与图像的对应关系。
最佳实践建议
-
对于大多数应用场景,推荐使用API服务器模式,它更简单且不易出错。
-
在需要精确控制图像位置或处理复杂图文交替场景时,可以考虑使用离线推理模式。
-
无论哪种模式,都要确保文本和图像的逻辑顺序合理,避免产生歧义。
-
在多图像场景下,特别注意图像与描述之间的对应关系,可以通过添加明确的文本指示符来提高模型理解准确性。
通过理解这些技术细节,开发者可以更有效地在OpenBMB/OmniLMM项目中实现高质量的图文穿插推理功能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









