OpenBMB/OmniLMM项目中实现图文穿插推理的技术解析
在OpenBMB/OmniLMM这类多模态大语言模型项目中,实现图文穿插推理是一个关键技术需求。本文将深入探讨如何在不同场景下实现这一功能。
图文穿插推理的两种实现方式
OpenBMB/OmmiLMM项目提供了两种主要的图文穿插推理实现方式,分别适用于不同的使用场景。
API服务器模式
在API服务器模式下,系统会自动处理图像令牌的插入,开发者无需手动指定<image>
标记。这种模式下,图文穿插的实现依赖于消息内容(content)列表的顺序排列。
典型的消息结构如下:
{
"role": "user",
"content": [
{"type": "text", "text": "这里有一张图片"},
{
"type": "image_url",
"image_url": {
"url": "图片URL地址"
}
},
{"type": "text", "text": "请描述这张图片"}
]
}
这种结构会被自动解析为"文-图-文"的穿插形式。开发者只需按照期望的图文顺序排列content列表中的元素即可实现任意形式的图文穿插。
离线推理模式
在离线推理场景下,开发者需要显式地使用<image>
标记来指示图像位置,并通过multi_modal_data参数提供对应的图像数据。
典型实现方式如下:
messages = [{
"role": "user",
"content": "(<image>./</image>)\nWhat is the content of this image?"
}]
inputs = {
"prompt": tokenizer.apply_chat_template(messages, tokenize=False),
"multi_modal_data": {
"image": image_data
}
}
在这种模式下,<image>
标记的数量必须与multi_modal_data中提供的图像数量严格匹配,系统会按照顺序将图像插入到对应的标记位置。
技术实现原理
这两种模式背后的技术原理有所不同:
-
API服务器模式:服务器端会自动解析content列表,当遇到image_url类型时,会自动在内部表示中插入图像令牌,并处理图像下载和编码。这种方式的优点是开发者无需关心令牌细节,缺点是灵活性稍低。
-
离线推理模式:开发者需要显式控制图像令牌的位置,这种方式提供了更精细的控制能力,适合需要精确控制图像位置的复杂场景。但需要开发者自行确保令牌与图像的对应关系。
最佳实践建议
-
对于大多数应用场景,推荐使用API服务器模式,它更简单且不易出错。
-
在需要精确控制图像位置或处理复杂图文交替场景时,可以考虑使用离线推理模式。
-
无论哪种模式,都要确保文本和图像的逻辑顺序合理,避免产生歧义。
-
在多图像场景下,特别注意图像与描述之间的对应关系,可以通过添加明确的文本指示符来提高模型理解准确性。
通过理解这些技术细节,开发者可以更有效地在OpenBMB/OmniLMM项目中实现高质量的图文穿插推理功能。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









