Project Graph项目删除功能优化:快捷键支持与UI改进
在图形编辑类软件中,删除操作是最基础也是最高频使用的功能之一。Project Graph作为一款图形化工具,其删除功能的用户体验直接影响着用户的工作效率。近期,该项目针对删除功能进行了两项重要优化:添加Delete键快捷操作和简化工具栏UI设计。
删除快捷键的必要性
原版本中,Project Graph提供了两种删除方式:右键拖动删除和工具栏按钮删除。右键拖动虽然便捷,但存在明显局限性——只能删除一条直线上的内容。对于需要大面积删除的场景,用户必须依赖框选功能配合工具栏的删除按钮,而缺乏快捷键支持使得这一高频操作变得低效。
在专业图形软件中,快捷键是提升工作效率的关键因素。根据用户反馈,开发团队意识到为删除功能添加键盘快捷键(特别是Delete键)的迫切性。Delete键作为计算机操作系统中通用的删除快捷键,其使用习惯已经深植用户心智。在大多数设计软件(如Photoshop、Illustrator等)和IDE中,Delete键都承担着删除选中对象的职责。
技术实现方案
新版本中,开发团队为Project Graph添加了Delete键的事件监听。当用户选中一个或多个图形节点后,按下Delete键即可直接删除选中对象,无需再移动鼠标寻找工具栏按钮。这一改进显著提升了批量删除操作的流畅度。
从技术实现角度看,这通常涉及:
- 在应用全局添加键盘事件监听器
- 判断当前是否有选中的图形元素
- 当Delete键按下时,触发与工具栏删除按钮相同的删除逻辑
- 确保删除操作后及时更新视图和数据结构
工具栏UI优化
原版本工具栏存在三个相同的删除图标,但只有第一个具有实际功能。这种设计不仅造成用户困惑,也浪费了宝贵的界面空间。经过分析,开发团队确认这是早期开发阶段的占位设计,用于测试工具栏的渲染机制。
在优化后的版本中:
- 移除了冗余的占位图标
- 仅保留一个功能完整的删除按钮
- 为未来可能添加的对齐等工具按钮预留了扩展空间
这种简化设计遵循了界面设计的"少即是多"原则,减少了用户的认知负担,使界面更加清晰直观。
用户体验提升
这两项改进虽然看似简单,但对用户体验的提升是显著的:
- 操作效率提升:Delete键的加入使得删除操作时间从"移动鼠标+点击"缩短为"单次按键"
- 操作一致性:与主流软件保持一致的快捷键设计降低了用户的学习成本
- 界面简洁性:去除冗余图标使界面更加专注,减少了用户的困惑
- 操作灵活性:快捷键与按钮并存的设计满足了不同用户的操作偏好
总结
Project Graph通过这次删除功能的优化,展示了良好的用户体验设计理念:识别高频操作痛点,遵循用户既有习惯,保持界面简洁明了。这种持续改进的态度对于开源项目尤为重要,它不仅能提升现有用户的使用体验,也能吸引更多潜在用户。
对于开发者而言,这个案例也提醒我们:即使是看似简单的功能,也需要从多个维度(操作方式、界面设计、性能等)进行持续优化,才能真正满足用户的需求。在未来的版本迭代中,Project Graph可以考虑进一步扩展快捷键体系,为用户提供更高效的操作体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00