AWS Deep Learning Containers发布PyTorch 2.4.0 GPU推理镜像支持Graviton处理器
AWS Deep Learning Containers(DLC)项目是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架、工具和库,帮助开发者快速部署机器学习工作负载。这些容器镜像经过优化,可以直接在AWS的各种计算服务上运行,包括EC2实例、EKS集群等。
近日,AWS DLC项目发布了针对ARM架构Graviton处理器的PyTorch 2.4.0 GPU推理镜像,版本号为v1.19-pt-graviton-ec2-2.4.0-inf-gpu-py311。这一版本为开发者提供了在Graviton处理器上运行PyTorch GPU推理任务的能力。
镜像技术细节
该镜像基于Ubuntu 22.04操作系统构建,主要技术规格包括:
- PyTorch版本:2.4.0(CUDA 12.4支持)
- Python版本:3.11
- CUDA工具包:12.4
- cuDNN版本:9
镜像中预装了完整的PyTorch生态系统工具,包括torchaudio(2.4.0)、torchvision(0.19.0)以及模型服务工具torchserve(0.12.0)和torch-model-archiver(0.12.0)。
关键软件包版本
镜像中包含了深度学习工作负载所需的各类依赖包:
Python包:
- 科学计算:NumPy 1.26.4、SciPy 1.14.1、pandas 2.2.3
- 图像处理:OpenCV 4.10.0.84、Pillow 11.0.0
- 开发工具:Cython 3.0.11、ninja 1.11.1.1
- AWS工具:boto3 1.35.54、awscli 1.35.20
系统包:
- CUDA相关:cuda-command-line-tools-12-4、libcublas-12-4、libcudnn9-cuda-12
- 编译器工具链:libgcc-11-dev、libstdc++-11-dev
- 编辑器:emacs系列工具
技术优势
这一版本的发布为ARM架构的Graviton处理器用户带来了几个重要优势:
-
性能优化:镜像针对Graviton处理器进行了专门优化,能够充分发挥ARM架构的性能特点。
-
完整的PyTorch GPU支持:虽然运行在ARM架构上,但通过CUDA 12.4和cuDNN 9的支持,开发者可以充分利用NVIDIA GPU的加速能力。
-
生产就绪的工具链:预装的torchserve和model-archiver工具使得模型部署更加便捷,适合生产环境使用。
-
现代软件栈:基于Python 3.11和Ubuntu 22.04,提供了最新的语言特性和系统支持。
适用场景
这一镜像特别适合以下场景:
- 需要在Graviton处理器上部署PyTorch推理服务的用户
- 希望利用ARM架构成本优势的机器学习应用
- 需要同时使用Graviton处理器和NVIDIA GPU的混合架构场景
- 追求最新PyTorch版本特性的开发者
AWS Deep Learning Containers项目的这一更新,进一步丰富了ARM架构上的深度学习工具生态,为开发者提供了更多架构选择和部署灵活性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00