在api-for-open-llm项目中部署Qwen2-72B-AWQ模型的技术实践
在开源项目api-for-open-llm中部署大语言模型时,开发者可能会遇到一些技术挑战。本文将重点分析在最新vllm环境下部署Qwen2-72B-AWQ量化模型时出现的两个关键问题及其解决方案。
问题一:tokenizer参数缺失错误
当使用vllm 0.4.2版本时,开发者会遇到一个明显的错误提示:"get_guided_decoding_logits_processor() missing 1 required positional argument: 'tokenizer'"。这个错误源于vllm框架在0.4.2版本中的API设计缺陷,导致在创建聊天完成接口时未能正确传递tokenizer参数。
该问题已在vllm 0.4.3版本中得到修复。对于仍在使用0.4.2版本的开发者,项目维护者已经更新了代码库,通过显式传递tokenizer参数解决了这个问题。开发者只需更新到最新代码即可解决此问题。
问题二:chatml模板的stop word设置
另一个值得注意的问题是使用chatml模板时stop word被设置为None的情况。在对话系统中,stop word用于标识对话的结束,其缺失可能导致对话无法正常终止。这个问题虽然看似简单,但在实际部署中会影响模型的交互体验。
对于Qwen系列模型,特别是使用AWQ量化的版本,正确的stop word设置尤为重要。开发者需要根据具体模型的要求,在配置中明确指定适当的stop word,如"<|endoftext|>"等模型特定的结束标记。
部署建议
-
版本控制:始终确保使用vllm 0.4.3或更高版本,以避免已知的API兼容性问题。
-
模板配置:对于Qwen2系列模型,仔细检查chat模板配置,确保stop word设置正确。
-
资源分配:Qwen2-72B作为大型模型,需要充足的GPU资源。在配置文件中可以看到gpu_memory_utilization被设置为0.95,这是为了最大化利用可用显存。
-
量化配置:AWQ量化虽然能减少显存占用,但需要注意load_in_4bit参数的设置,确保量化正确加载。
通过解决这些问题,开发者可以更顺利地在api-for-open-llm项目中部署和运行Qwen2-72B-AWQ等大型语言模型,为后续的应用开发奠定基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00