Apollo Client 中 no-cache 策略与 fetchMore 的配合使用
2025-05-11 18:52:15作者:明树来
理解 no-cache 策略的限制
在 Apollo Client 中,当开发者选择使用 no-cache 作为查询策略时,意味着明确指示客户端不要将查询结果缓存到内存中。这种策略通常用于那些数据变化频繁、或者不需要缓存的场景。然而,这种策略在与分页功能 fetchMore 配合使用时,会带来一个特殊的技术挑战。
fetchMore 的工作原理
fetchMore 是 Apollo Client 提供的分页功能核心方法,它允许开发者在已有查询结果的基础上获取更多数据。在标准情况下,Apollo Client 会自动将新获取的数据与缓存中的现有数据合并。这种自动合并机制依赖于缓存中存储的先前查询结果。
为什么需要 updateQuery
当使用 no-cache 策略时,Apollo Client 面临一个关键问题:由于没有缓存先前查询的结果,客户端无法知道开发者希望如何将新获取的分页数据与之前的数据合并。开发者可能有不同的合并需求:
- 完全替换现有数据
- 将新数据追加到列表末尾
- 将新数据插入到列表开头
- 其他自定义合并逻辑
正是由于这种不确定性,Apollo Client 强制要求在使用 no-cache 策略时,开发者必须显式提供 updateQuery 函数,明确指定如何合并新旧数据。
实际应用示例
假设我们正在开发一个聊天应用,需要获取聊天消息并支持分页加载历史消息。使用 no-cache 策略时,代码应该这样写:
const { loading, fetchMore } = useQuery(GET_MESSAGES_QUERY, {
variables: { messenger_chat_id: 1 },
fetchPolicy: "no-cache"
});
const loadMoreMessages = async () => {
await fetchMore({
variables: {
before: 200 // 假设这是分页游标
},
updateQuery: (prev, { fetchMoreResult }) => {
if (!fetchMoreResult) return prev;
return {
...prev,
messages: [...fetchMoreResult.messages, ...prev.messages]
};
}
});
};
在这个例子中,updateQuery 函数明确指定了如何将新获取的消息与现有消息合并——将新消息追加到数组开头。
最佳实践建议
- 在使用
no-cache策略时,始终为fetchMore提供updateQuery函数 - 在
updateQuery中实现明确的合并逻辑,避免数据不一致 - 考虑数据排序方向,确保新数据被放置在正确的位置
- 处理边界情况,如
fetchMoreResult为空的情况
总结
Apollo Client 强制要求在使用 no-cache 策略时提供 updateQuery 函数,这一设计决策体现了框架对数据一致性的重视。开发者需要理解这一限制背后的技术原因,并在实现分页功能时提供适当的合并逻辑,确保应用的数据处理行为符合预期。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871