Apollo Client 中 no-cache 策略与 fetchMore 的配合使用
2025-05-11 16:54:55作者:明树来
理解 no-cache 策略的限制
在 Apollo Client 中,当开发者选择使用 no-cache 作为查询策略时,意味着明确指示客户端不要将查询结果缓存到内存中。这种策略通常用于那些数据变化频繁、或者不需要缓存的场景。然而,这种策略在与分页功能 fetchMore 配合使用时,会带来一个特殊的技术挑战。
fetchMore 的工作原理
fetchMore 是 Apollo Client 提供的分页功能核心方法,它允许开发者在已有查询结果的基础上获取更多数据。在标准情况下,Apollo Client 会自动将新获取的数据与缓存中的现有数据合并。这种自动合并机制依赖于缓存中存储的先前查询结果。
为什么需要 updateQuery
当使用 no-cache 策略时,Apollo Client 面临一个关键问题:由于没有缓存先前查询的结果,客户端无法知道开发者希望如何将新获取的分页数据与之前的数据合并。开发者可能有不同的合并需求:
- 完全替换现有数据
- 将新数据追加到列表末尾
- 将新数据插入到列表开头
- 其他自定义合并逻辑
正是由于这种不确定性,Apollo Client 强制要求在使用 no-cache 策略时,开发者必须显式提供 updateQuery 函数,明确指定如何合并新旧数据。
实际应用示例
假设我们正在开发一个聊天应用,需要获取聊天消息并支持分页加载历史消息。使用 no-cache 策略时,代码应该这样写:
const { loading, fetchMore } = useQuery(GET_MESSAGES_QUERY, {
variables: { messenger_chat_id: 1 },
fetchPolicy: "no-cache"
});
const loadMoreMessages = async () => {
await fetchMore({
variables: {
before: 200 // 假设这是分页游标
},
updateQuery: (prev, { fetchMoreResult }) => {
if (!fetchMoreResult) return prev;
return {
...prev,
messages: [...fetchMoreResult.messages, ...prev.messages]
};
}
});
};
在这个例子中,updateQuery 函数明确指定了如何将新获取的消息与现有消息合并——将新消息追加到数组开头。
最佳实践建议
- 在使用
no-cache策略时,始终为fetchMore提供updateQuery函数 - 在
updateQuery中实现明确的合并逻辑,避免数据不一致 - 考虑数据排序方向,确保新数据被放置在正确的位置
- 处理边界情况,如
fetchMoreResult为空的情况
总结
Apollo Client 强制要求在使用 no-cache 策略时提供 updateQuery 函数,这一设计决策体现了框架对数据一致性的重视。开发者需要理解这一限制背后的技术原因,并在实现分页功能时提供适当的合并逻辑,确保应用的数据处理行为符合预期。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758