首页
/ LLaVA项目多卡训练Loss异常问题分析与解决方案

LLaVA项目多卡训练Loss异常问题分析与解决方案

2025-05-09 10:37:57作者:舒璇辛Bertina

问题背景

在使用LLaVA-v1.5-7B模型进行训练时,许多开发者遇到了一个奇怪的现象:当使用单张A100 40G显卡进行训练时,模型表现正常,Loss值能够正常下降;然而一旦切换到多卡训练模式,Loss值就会持续保持为0,导致模型无法正常学习。这个问题在多个开发者的实践中被反复验证和确认。

问题分析

在多卡训练场景下出现Loss为0的情况,通常与分布式训练中的通信机制有关。具体到LLaVA项目,这个问题主要源于DeepSpeed框架的通信优化设置。DeepSpeed作为高效的分布式训练框架,默认会启用通信重叠(overlap_comm)优化,这项技术旨在通过重叠计算和通信来提高训练效率。

然而,在某些特定模型架构或训练配置下,这种通信重叠可能会导致梯度同步异常,表现为Loss计算异常。特别是在视觉-语言多模态模型中,由于需要处理两种不同模态的数据,通信模式可能更为复杂,更容易受到这种优化的影响。

解决方案

经过社区验证,最有效的解决方案是修改DeepSpeed的配置文件,禁用通信重叠优化。具体操作如下:

  1. 对于使用Zero-2优化阶段的用户,需要修改scripts/zero2.json文件
  2. 对于使用Zero-3优化阶段的用户,需要修改scripts/zero3.json文件

修改内容为在配置文件中添加或修改以下参数:

{
    "overlap_comm": false
}

技术原理

禁用overlap_comm后,DeepSpeed会采用更保守但更稳定的通信策略,确保梯度同步的正确性。虽然这可能会略微降低训练速度,但能保证训练过程的稳定性。对于视觉-语言模型这类复杂架构,这种权衡通常是值得的。

实践建议

  1. 在修改配置文件前,建议备份原始文件
  2. 修改后,建议先进行小规模训练验证效果
  3. 如果训练速度下降明显,可以尝试调整其他DeepSpeed参数来补偿性能损失
  4. 对于大规模训练任务,建议在修改配置后进行充分的稳定性测试

总结

多卡训练中的Loss异常问题是分布式深度学习中的典型挑战之一。通过理解DeepSpeed的通信机制并适当调整其配置,可以有效解决这类问题。这一解决方案不仅适用于LLaVA项目,对于其他使用DeepSpeed框架的复杂模型训练也具有参考价值。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.92 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8