LLaVA项目多卡训练Loss异常问题分析与解决方案
2025-05-09 01:41:57作者:舒璇辛Bertina
问题背景
在使用LLaVA-v1.5-7B模型进行训练时,许多开发者遇到了一个奇怪的现象:当使用单张A100 40G显卡进行训练时,模型表现正常,Loss值能够正常下降;然而一旦切换到多卡训练模式,Loss值就会持续保持为0,导致模型无法正常学习。这个问题在多个开发者的实践中被反复验证和确认。
问题分析
在多卡训练场景下出现Loss为0的情况,通常与分布式训练中的通信机制有关。具体到LLaVA项目,这个问题主要源于DeepSpeed框架的通信优化设置。DeepSpeed作为高效的分布式训练框架,默认会启用通信重叠(overlap_comm)优化,这项技术旨在通过重叠计算和通信来提高训练效率。
然而,在某些特定模型架构或训练配置下,这种通信重叠可能会导致梯度同步异常,表现为Loss计算异常。特别是在视觉-语言多模态模型中,由于需要处理两种不同模态的数据,通信模式可能更为复杂,更容易受到这种优化的影响。
解决方案
经过社区验证,最有效的解决方案是修改DeepSpeed的配置文件,禁用通信重叠优化。具体操作如下:
- 对于使用Zero-2优化阶段的用户,需要修改
scripts/zero2.json文件 - 对于使用Zero-3优化阶段的用户,需要修改
scripts/zero3.json文件
修改内容为在配置文件中添加或修改以下参数:
{
"overlap_comm": false
}
技术原理
禁用overlap_comm后,DeepSpeed会采用更保守但更稳定的通信策略,确保梯度同步的正确性。虽然这可能会略微降低训练速度,但能保证训练过程的稳定性。对于视觉-语言模型这类复杂架构,这种权衡通常是值得的。
实践建议
- 在修改配置文件前,建议备份原始文件
- 修改后,建议先进行小规模训练验证效果
- 如果训练速度下降明显,可以尝试调整其他DeepSpeed参数来补偿性能损失
- 对于大规模训练任务,建议在修改配置后进行充分的稳定性测试
总结
多卡训练中的Loss异常问题是分布式深度学习中的典型挑战之一。通过理解DeepSpeed的通信机制并适当调整其配置,可以有效解决这类问题。这一解决方案不仅适用于LLaVA项目,对于其他使用DeepSpeed框架的复杂模型训练也具有参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
412
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146