System.Linq.Dynamic.Core 项目新增 JSON 查询支持的技术解析
2025-07-10 13:36:11作者:蔡怀权
System.Linq.Dynamic.Core 是一个强大的动态 LINQ 查询库,它允许开发者在运行时构建和执行 LINQ 查询。最近,该项目新增了对 JSON 数据的原生查询支持,这一特性极大地简化了处理 JSON 数据的流程。
JSON 查询的痛点
在传统开发中,处理 JSON 数据时通常需要先将 JSON 反序列化为强类型对象,或者使用繁琐的 API 来访问 JSON 属性。例如,使用 System.Text.Json 时,查询一个 JSON 数组中的特定元素需要编写如下代码:
jsonDocument.RootElement.Where(e => e.GetProperty("City").GetRawText() == "Paris");
这种方式不仅代码冗长,而且在处理动态 JSON 结构时尤为不便,因为开发者无法预先知道 JSON 的结构。
新增的 JSON 查询功能
System.Linq.Dynamic.Core 现在提供了对 JSON 数据的原生支持,使得查询 JSON 数据就像查询普通对象一样简单。新功能支持两种主要的 JSON 处理库:
- System.Text.Json:微软官方提供的 JSON 处理库
- Newtonsoft.Json:广泛使用的第三方 JSON 库
使用示例
对于 System.Text.Json,现在可以这样查询:
var jsonDocument = JsonDocument.Parse(@"[{
""first"": 1,
""City"": ""Paris"",
""third"": ""012-04-23T18:25:43.511Z""
}]");
var results = jsonDocument.RootElement.Where("City == \"Paris\"");
对于 Newtonsoft.Json,查询方式类似:
var jsonObject = JObject.Parse(@"[{
""first"": 1,
""City"": ""Paris"",
""third"": ""012-04-23T18:25:43.511Z""
}]");
var results = jsonObject.Where("City == \"Paris\"");
技术实现原理
为了实现这一功能,项目团队采用了以下技术方案:
- 动态类型转换:在内部将 JSON 元素转换为动态类型,使得现有的动态 LINQ 查询引擎可以直接处理
- 扩展方法:为 JsonDocument 和 JObject 添加了 Where 等 LINQ 操作符的扩展方法
- 类型适配层:在查询执行时自动处理 JSON 特有的数据类型和访问方式
这种实现方式既保持了现有 API 的一致性,又无需修改核心查询引擎,具有良好的扩展性。
优势与价值
这一新特性带来了以下优势:
- 简化代码:大大减少了处理 JSON 数据所需的代码量
- 提高开发效率:开发者可以专注于业务逻辑而非数据访问细节
- 更好的动态性:特别适合处理结构未知或变化的 JSON 数据
- 性能优化:避免了频繁创建中间对象带来的性能开销
适用场景
这一功能特别适用于以下场景:
- 处理来自第三方 API 的 JSON 响应
- 查询存储在 NoSQL 数据库中的 JSON 文档
- 构建动态报表系统,其中查询条件由用户定义
- 实现灵活的数据过滤功能
总结
System.Linq.Dynamic.Core 新增的 JSON 查询支持是该库的一个重要里程碑,它填补了动态 LINQ 查询在处理 JSON 数据方面的空白。这一特性不仅简化了开发流程,还提高了代码的可读性和维护性。对于需要频繁处理 JSON 数据的.NET开发者来说,这无疑是一个值得关注的重要更新。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218