System.Linq.Dynamic.Core 项目新增 JSON 查询支持的技术解析
2025-07-10 21:02:58作者:蔡怀权
System.Linq.Dynamic.Core 是一个强大的动态 LINQ 查询库,它允许开发者在运行时构建和执行 LINQ 查询。最近,该项目新增了对 JSON 数据的原生查询支持,这一特性极大地简化了处理 JSON 数据的流程。
JSON 查询的痛点
在传统开发中,处理 JSON 数据时通常需要先将 JSON 反序列化为强类型对象,或者使用繁琐的 API 来访问 JSON 属性。例如,使用 System.Text.Json 时,查询一个 JSON 数组中的特定元素需要编写如下代码:
jsonDocument.RootElement.Where(e => e.GetProperty("City").GetRawText() == "Paris");
这种方式不仅代码冗长,而且在处理动态 JSON 结构时尤为不便,因为开发者无法预先知道 JSON 的结构。
新增的 JSON 查询功能
System.Linq.Dynamic.Core 现在提供了对 JSON 数据的原生支持,使得查询 JSON 数据就像查询普通对象一样简单。新功能支持两种主要的 JSON 处理库:
- System.Text.Json:微软官方提供的 JSON 处理库
- Newtonsoft.Json:广泛使用的第三方 JSON 库
使用示例
对于 System.Text.Json,现在可以这样查询:
var jsonDocument = JsonDocument.Parse(@"[{
""first"": 1,
""City"": ""Paris"",
""third"": ""012-04-23T18:25:43.511Z""
}]");
var results = jsonDocument.RootElement.Where("City == \"Paris\"");
对于 Newtonsoft.Json,查询方式类似:
var jsonObject = JObject.Parse(@"[{
""first"": 1,
""City"": ""Paris"",
""third"": ""012-04-23T18:25:43.511Z""
}]");
var results = jsonObject.Where("City == \"Paris\"");
技术实现原理
为了实现这一功能,项目团队采用了以下技术方案:
- 动态类型转换:在内部将 JSON 元素转换为动态类型,使得现有的动态 LINQ 查询引擎可以直接处理
- 扩展方法:为 JsonDocument 和 JObject 添加了 Where 等 LINQ 操作符的扩展方法
- 类型适配层:在查询执行时自动处理 JSON 特有的数据类型和访问方式
这种实现方式既保持了现有 API 的一致性,又无需修改核心查询引擎,具有良好的扩展性。
优势与价值
这一新特性带来了以下优势:
- 简化代码:大大减少了处理 JSON 数据所需的代码量
- 提高开发效率:开发者可以专注于业务逻辑而非数据访问细节
- 更好的动态性:特别适合处理结构未知或变化的 JSON 数据
- 性能优化:避免了频繁创建中间对象带来的性能开销
适用场景
这一功能特别适用于以下场景:
- 处理来自第三方 API 的 JSON 响应
- 查询存储在 NoSQL 数据库中的 JSON 文档
- 构建动态报表系统,其中查询条件由用户定义
- 实现灵活的数据过滤功能
总结
System.Linq.Dynamic.Core 新增的 JSON 查询支持是该库的一个重要里程碑,它填补了动态 LINQ 查询在处理 JSON 数据方面的空白。这一特性不仅简化了开发流程,还提高了代码的可读性和维护性。对于需要频繁处理 JSON 数据的.NET开发者来说,这无疑是一个值得关注的重要更新。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0287- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程中屏幕放大器知识点优化分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
852
505

deepin linux kernel
C
21
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
240
283

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。
JavaScript
78
55

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
614
74

React Native鸿蒙化仓库
C++
175
260

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.07 K