OSQP项目在x86平台交叉编译ARMv8可执行文件的技术实践
2025-07-07 09:53:21作者:魏侃纯Zoe
背景介绍
OSQP是一个高效的二次规划求解器,广泛应用于控制、优化等领域。在实际开发中,我们经常需要将OSQP部署到不同的硬件平台上。本文将详细介绍如何在x86平台上为ARMv8架构交叉编译OSQP项目。
交叉编译的基本概念
交叉编译是指在一个平台上生成另一个平台可执行代码的过程。在本案例中,我们需要在x86架构的计算机上编译出能在ARMv8架构上运行的程序。这种技术对于嵌入式开发特别重要,因为目标设备通常计算能力有限,不适合直接进行编译工作。
准备工作
进行交叉编译前,需要准备以下工具和环境:
- 安装交叉编译工具链:在Ubuntu系统上可以通过
apt-get install gcc-aarch64-linux-gnu g++-aarch64-linux-gnu命令安装 - 确保主机系统已安装CMake构建工具
- 获取OSQP项目源代码(cuda-1.0分支)
正确的交叉编译方法
通过实践发现,直接在CMakeLists.txt中设置编译器路径并不是最佳实践。正确的做法是创建一个独立的工具链文件,然后在CMake配置阶段指定该工具链文件。
创建工具链文件
创建一个名为aarch64-toolchain.cmake的文件,内容如下:
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR aarch64)
set(CMAKE_C_COMPILER /usr/bin/aarch64-linux-gnu-gcc)
set(CMAKE_CXX_COMPILER /usr/bin/aarch64-linux-gnu-g++)
set(CMAKE_LINKER /usr/bin/aarch64-linux-gnu-ld)
set(CMAKE_ASM_COMPILER /usr/bin/aarch64-linux-gnu-as)
set(CMAKE_AR /usr/bin/aarch64-linux-gnu-ar)
set(CMAKE_RANLIB /usr/bin/aarch64-linux-gnu-ranlib)
配置CMake项目
在构建OSQP时,使用以下命令指定工具链文件:
mkdir build && cd build
cmake -DCMAKE_TOOLCHAIN_FILE=../aarch64-toolchain.cmake ..
make
常见问题及解决方案
- 编译器路径错误:确保工具链文件中的路径与系统中实际安装的交叉编译器路径一致
- 依赖库缺失:ARM架构的依赖库可能需要单独安装,使用
apt-get install libxxx-dev:arm64安装 - 链接错误:检查是否所有依赖库都提供了ARMv8架构的版本
最佳实践建议
- 使用独立的工具链文件而不是修改项目CMakeLists.txt
- 在容器环境中进行交叉编译可以避免污染主机环境
- 编译完成后使用
file命令检查生成的可执行文件架构是否正确 - 考虑使用QEMU在x86平台上模拟运行ARM程序进行初步测试
总结
通过本文介绍的方法,开发者可以高效地在x86平台上为ARMv8架构交叉编译OSQP项目。这种方法不仅适用于OSQP,也可以推广到其他需要交叉编译的开源项目中。掌握交叉编译技术对于嵌入式开发和跨平台部署具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669