pyGAM 使用教程
2024-09-13 04:20:23作者:董斯意
1. 项目介绍
pyGAM 是一个用于构建广义加性模型(Generalized Additive Models, GAMs)的 Python 包。GAMs 是广义线性模型(GLMs)的扩展,允许特征的非线性函数,同时保持模型的可加性。pyGAM 提供了灵活的 API,使得用户可以轻松地构建和调整 GAM 模型,适用于回归、分类等多种任务。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 3.8 或更高版本。然后,使用 pip 安装 pyGAM:
pip install pygam
快速示例
以下是一个简单的回归示例,展示了如何使用 pyGAM 进行模型拟合和预测。
import numpy as np
from pygam import LinearGAM
# 生成一些示例数据
np.random.seed(0)
X = np.random.rand(100, 2)
y = 2 * X[:, 0] + 3 * X[:, 1] + np.random.randn(100)
# 创建并拟合模型
gam = LinearGAM().fit(X, y)
# 预测
X_test = np.random.rand(10, 2)
y_pred = gam.predict(X_test)
print("预测结果:", y_pred)
3. 应用案例和最佳实践
分类案例
pyGAM 不仅可以用于回归任务,还可以用于分类任务。以下是一个使用 LogisticGAM 进行二分类的示例。
from pygam import LogisticGAM
from sklearn.datasets import load_breast_cancer
# 加载乳腺癌数据集
data = load_breast_cancer()
X = data.data
y = data.target
# 创建并拟合模型
gam = LogisticGAM().fit(X, y)
# 预测
y_pred = gam.predict(X)
print("预测准确率:", gam.accuracy(X, y))
最佳实践
- 特征选择:在构建 GAM 模型时,选择合适的特征非常重要。可以使用部分依赖图(Partial Dependency Plots)来可视化特征与目标变量之间的关系。
- 模型调参:使用网格搜索(Grid Search)来自动调整模型参数,如
n_splines和lam。 - 模型解释:GAM 模型的可加性使得模型解释变得相对简单,可以通过查看每个特征的平滑函数来理解特征对目标变量的影响。
4. 典型生态项目
pyGAM 可以与其他 Python 数据科学工具包无缝集成,例如:
- scikit-learn:用于数据预处理、模型评估和交叉验证。
- pandas:用于数据处理和分析。
- matplotlib 和 seaborn:用于数据可视化。
通过这些工具的结合,可以构建一个完整的数据分析和建模流程。
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据集
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(df.drop('target', axis=1), df['target'], test_size=0.2, random_state=0)
# 创建并拟合模型
gam = LogisticGAM().fit(X_train, y_train)
# 预测
y_pred = gam.predict(X_test)
print("测试集准确率:", accuracy_score(y_test, y_pred))
通过以上步骤,你可以快速上手使用 pyGAM 进行数据建模和分析。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671