pyGAM 使用教程
2024-09-13 07:33:26作者:董斯意
1. 项目介绍
pyGAM 是一个用于构建广义加性模型(Generalized Additive Models, GAMs)的 Python 包。GAMs 是广义线性模型(GLMs)的扩展,允许特征的非线性函数,同时保持模型的可加性。pyGAM 提供了灵活的 API,使得用户可以轻松地构建和调整 GAM 模型,适用于回归、分类等多种任务。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 3.8 或更高版本。然后,使用 pip 安装 pyGAM:
pip install pygam
快速示例
以下是一个简单的回归示例,展示了如何使用 pyGAM 进行模型拟合和预测。
import numpy as np
from pygam import LinearGAM
# 生成一些示例数据
np.random.seed(0)
X = np.random.rand(100, 2)
y = 2 * X[:, 0] + 3 * X[:, 1] + np.random.randn(100)
# 创建并拟合模型
gam = LinearGAM().fit(X, y)
# 预测
X_test = np.random.rand(10, 2)
y_pred = gam.predict(X_test)
print("预测结果:", y_pred)
3. 应用案例和最佳实践
分类案例
pyGAM 不仅可以用于回归任务,还可以用于分类任务。以下是一个使用 LogisticGAM
进行二分类的示例。
from pygam import LogisticGAM
from sklearn.datasets import load_breast_cancer
# 加载乳腺癌数据集
data = load_breast_cancer()
X = data.data
y = data.target
# 创建并拟合模型
gam = LogisticGAM().fit(X, y)
# 预测
y_pred = gam.predict(X)
print("预测准确率:", gam.accuracy(X, y))
最佳实践
- 特征选择:在构建 GAM 模型时,选择合适的特征非常重要。可以使用部分依赖图(Partial Dependency Plots)来可视化特征与目标变量之间的关系。
- 模型调参:使用网格搜索(Grid Search)来自动调整模型参数,如
n_splines
和lam
。 - 模型解释:GAM 模型的可加性使得模型解释变得相对简单,可以通过查看每个特征的平滑函数来理解特征对目标变量的影响。
4. 典型生态项目
pyGAM 可以与其他 Python 数据科学工具包无缝集成,例如:
- scikit-learn:用于数据预处理、模型评估和交叉验证。
- pandas:用于数据处理和分析。
- matplotlib 和 seaborn:用于数据可视化。
通过这些工具的结合,可以构建一个完整的数据分析和建模流程。
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据集
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(df.drop('target', axis=1), df['target'], test_size=0.2, random_state=0)
# 创建并拟合模型
gam = LogisticGAM().fit(X_train, y_train)
# 预测
y_pred = gam.predict(X_test)
print("测试集准确率:", accuracy_score(y_test, y_pred))
通过以上步骤,你可以快速上手使用 pyGAM 进行数据建模和分析。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133