sccache项目对NVIDIA CUDA编译器nvcc的分布式编译支持
2025-06-03 16:15:28作者:董斯意
背景介绍
sccache是一个由Mozilla开发的编译器缓存工具,旨在通过缓存编译结果来加速编译过程。其分布式模式(sccache-dist)允许将编译任务分发到多台机器上执行,从而进一步提高编译速度。然而,对于NVIDIA的CUDA编译器nvcc,sccache的分布式模式一直存在支持不足的问题。
技术挑战
sccache-dist模式的核心机制是将预处理后的源代码发送到远程服务器进行编译。然而,nvcc的工作机制与传统C++编译器有显著不同:
- nvcc需要同时处理主机(CPU)代码和设备(GPU)代码
- 可以为多个GPU架构生成代码并打包成"fat binary"
- 每个GPU架构的预处理结果可能不同,无法生成单一的预处理文件
这些特性使得nvcc无法直接支持sccache-dist现有的工作流程。
解决方案设计
经过深入分析,开发团队提出了创新性的解决方案:
- 分解编译流程:利用nvcc的--dryrun选项获取其内部执行的详细命令序列
- 识别可分布式执行的阶段:将编译过程分为必须在客户端执行的预处理阶段和可以分布式执行的编译阶段
- 新增编译器支持:将cicc(CUDA中间代码编译器)和ptxas(PTX汇编器)作为一级支持的编译器
实现细节
解决方案将nvcc的编译流程分解为以下几个关键阶段:
1. 预处理阶段(客户端执行)
- 使用主机编译器(gcc/clang)预处理源代码
- 运行CUDA前端(cudafe++)分离主机和设备代码
2. 设备代码编译(可分布式)
- 对每个目标架构:
- 预处理特定架构的代码
- 使用cicc生成PTX中间代码
- 使用ptxas将PTX汇编为cubin二进制
3. 最终生成阶段
- 使用fatbinary工具合并多个架构的编译结果
- 编译最终的主机目标文件
技术优势
这一设计带来了多方面的改进:
- 真正的分布式支持:设备代码编译阶段可以充分利用分布式集群的计算资源
- 更细粒度的缓存:即使最终.o文件不匹配,仍可复用中间编译结果
- 性能提升:开发者本地编译时只需编译实际需要的架构,复用CI中已编译的其他架构结果
实际应用场景
考虑以下典型开发场景:
CI服务器编译支持所有架构:
nvcc ... \
-gencode=arch=compute_60,code=[sm_60] \
-gencode=arch=compute_70,code=[sm_70] \
-gencode=arch=compute_80,code=[sm_80] \
-gencode=arch=compute_90,code=[compute_90,sm_90]
开发者本地只需编译自己GPU对应的架构:
nvcc ... -gencode=arch=compute_90,code=[compute_90,sm_90]
在新方案下,虽然最终的.o文件不同,但compute_90相关的中间编译结果可以直接复用,大幅减少本地编译时间。
总结
sccache对nvcc的分布式编译支持通过创新的编译流程分解方法,解决了CUDA编译的特殊性带来的挑战。这一改进不仅实现了真正的分布式编译支持,还通过更细粒度的缓存机制显著提升了开发效率,特别是对于需要支持多GPU架构的项目。这一技术的实现展示了如何通过深入理解工具链工作原理来突破传统限制,为开发者提供更好的使用体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210