Lighthouse CI 使用指南
1. 项目介绍
Lighthouse CI 是一个由 Google Chrome 团队开发的工具集,旨在简化在持续集成(CI)过程中使用 Lighthouse 的流程。Lighthouse 是一个开源的自动化工具,用于提高网页质量,它提供了多种网页性能指标,包括性能、可访问性、最佳实践、SEO 和 PWA(渐进式 Web 应用)。
Lighthouse CI 的主要功能包括:
- 在每次提交时自动运行 Lighthouse。
- 防止性能和可访问性等方面的回归。
- 跟踪性能指标和 Lighthouse 评分随时间的变化。
- 设置和维护脚本和图像的性能预算。
- 多次运行 Lighthouse 以减少结果的方差。
- 比较两个版本的网站,找出资源改进和回归。
2. 项目快速启动
2.1 安装 Lighthouse CI CLI
首先,你需要全局安装 Lighthouse CI 命令行工具:
npm install -g @lhci/cli
2.2 配置 lighthouserc.js
在你的项目根目录下创建一个 lighthouserc.js 文件,并添加以下基本配置:
module.exports = {
ci: {
collect: {
staticDistDir: './public', // 如果你的站点是静态的
// startServerCommand: 'npm start', // 如果你的站点需要启动服务器
url: ['http://localhost:8080'], // 需要测试的 URL
},
upload: {
target: 'temporary-public-storage', // 将报告上传到临时公共存储
},
},
};
2.3 运行 Lighthouse CI
在你的终端中运行以下命令来启动 Lighthouse CI:
lhci autorun
2.4 配置 GitHub Actions
在你的项目根目录下创建 .github/workflows/lighthouse-ci.yml 文件,并添加以下内容:
name: CI
on: [push]
jobs:
lighthouseci:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: 18
- run: npm install && npm install -g @lhci/cli@0.14.x
- run: npm run build
- run: lhci autorun
3. 应用案例和最佳实践
3.1 防止性能回归
通过在 CI 流程中集成 Lighthouse CI,你可以在每次代码提交时自动运行 Lighthouse,并生成性能报告。如果某个提交导致性能下降,CI 流程将会失败,从而防止性能回归。
3.2 设置性能预算
Lighthouse CI 允许你设置性能预算,例如限制 JavaScript 和 CSS 文件的大小。如果某个提交超出了预算,CI 流程将会失败,从而确保你的项目始终保持在性能预算之内。
3.3 跟踪性能指标
通过 Lighthouse CI 服务器,你可以跟踪性能指标和 Lighthouse 评分随时间的变化。这有助于你了解项目的性能趋势,并及时发现性能问题。
4. 典型生态项目
4.1 Lighthouse CI GitHub Action
这是一个由社区维护的 GitHub Action,可以自动在每次 PR 时运行 Lighthouse CI,无需任何基础设施。
4.2 Lighthouse CI Starter Example
这是一个最小化的示例项目,你可以将其用作模板来开始使用 Lighthouse CI。它提供了一个使用 create-react-app 的初学者友好指南。
4.3 社区指南
社区中有许多关于如何使用 Lighthouse CI 的博客文章、教程和指南。例如:
- Integrate Lighthouse CI for static website generator - 介绍如何将 Lighthouse CI 与静态网站生成器(如 Gatsby、Jekyll 等)集成。
- Automating Google Lighthouse audits and uploading results to Azure - 介绍如何配置 Lighthouse CI 以在本地和 Azure 中运行,并将结果上传到 Lighthouse CI 服务器。
通过这些资源,你可以更深入地了解如何使用 Lighthouse CI 来提升你的项目性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00