Fastjson2在JDK17环境下序列化ReentrantLock的异常分析与修复
问题背景
在Java开发中,阿里巴巴开源的Fastjson2库因其高性能和易用性被广泛应用于JSON序列化和反序列化场景。近期有开发者反馈,在使用Fastjson2 2.0.43版本配合JDK17时,序列化包含ReentrantLock对象的类时会出现IllegalAccessError异常。
异常现象
当尝试序列化一个包含ReentrantLock成员变量的对象时,系统抛出以下异常:
java.lang.IllegalAccessError: failed to access class java.util.concurrent.locks.ReentrantLock$Sync
from class com.alibaba.fastjson2.writer.OWG_23_1_ReentrantLock
异常表明Fastjson2动态生成的序列化类无法访问JDK内置的ReentrantLock内部类,这是由于JDK模块化系统引入的访问控制限制导致的。
技术分析
JDK模块化系统的影响
自JDK9引入模块化系统后,核心Java类库被划分为不同的模块。ReentrantLock及其内部类位于java.base模块中,默认情况下不允许外部代码访问其非公开成员。Fastjson2通过动态生成字节码来实现高性能序列化,但在JDK17中这种动态生成的类无法直接访问ReentrantLock的内部Sync类。
Fastjson2的实现机制
Fastjson2为了提高性能,会为需要序列化的类动态生成专门的序列化器(Writer)。对于包含ReentrantLock的对象,它会尝试生成一个能够处理锁状态的序列化器。在JDK17之前,这种动态生成类可以正常访问ReentrantLock的内部结构,但在模块化系统严格限制下,这种访问方式不再可行。
解决方案
Fastjson2开发团队在2.0.49版本中修复了这个问题。修复方案主要包含以下改进:
- 修改动态类生成逻辑,避免直接访问ReentrantLock的内部类
- 提供对ReentrantLock的标准序列化支持
- 优化模块化环境下的兼容性处理
验证结果
使用修复后的2.0.49版本进行测试,序列化和反序列化ReentrantLock对象都能正常工作:
// 测试代码示例
public class Test {
public static void main(String[] args) {
Bean bean = new Bean();
bean.lock = new ReentrantLock();
byte[] bytes = JSONB.toBytes(bean, JSONWriter.Feature.FieldBased);
Bean bean1 = JSONB.parseObject(bytes, Bean.class, JSONReader.Feature.FieldBased);
System.out.println(bean1.lock); // 正常输出锁对象
}
public static class Bean {
public Lock lock;
}
}
注意事项
虽然修复后的版本可以正常处理ReentrantLock的序列化,但开发者需要注意:
- 序列化后的锁对象会丢失其当前状态(锁定/未锁定)
- 反序列化后会创建一个新的锁实例,而非保持原有锁的引用
- 对于需要保持锁状态的应用场景,建议实现自定义序列化逻辑
总结
Fastjson2在JDK17环境下序列化ReentrantLock的问题展示了Java模块化系统带来的兼容性挑战。通过版本升级到2.0.49及以上,开发者可以避免这类访问控制异常。这也提醒我们在使用新版本JDK时,需要关注依赖库的兼容性更新,特别是涉及反射和动态代码生成的场景。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00