Fastjson2在JDK17环境下序列化ReentrantLock的异常分析与修复
问题背景
在Java开发中,阿里巴巴开源的Fastjson2库因其高性能和易用性被广泛应用于JSON序列化和反序列化场景。近期有开发者反馈,在使用Fastjson2 2.0.43版本配合JDK17时,序列化包含ReentrantLock对象的类时会出现IllegalAccessError异常。
异常现象
当尝试序列化一个包含ReentrantLock成员变量的对象时,系统抛出以下异常:
java.lang.IllegalAccessError: failed to access class java.util.concurrent.locks.ReentrantLock$Sync
from class com.alibaba.fastjson2.writer.OWG_23_1_ReentrantLock
异常表明Fastjson2动态生成的序列化类无法访问JDK内置的ReentrantLock内部类,这是由于JDK模块化系统引入的访问控制限制导致的。
技术分析
JDK模块化系统的影响
自JDK9引入模块化系统后,核心Java类库被划分为不同的模块。ReentrantLock及其内部类位于java.base模块中,默认情况下不允许外部代码访问其非公开成员。Fastjson2通过动态生成字节码来实现高性能序列化,但在JDK17中这种动态生成的类无法直接访问ReentrantLock的内部Sync类。
Fastjson2的实现机制
Fastjson2为了提高性能,会为需要序列化的类动态生成专门的序列化器(Writer)。对于包含ReentrantLock的对象,它会尝试生成一个能够处理锁状态的序列化器。在JDK17之前,这种动态生成类可以正常访问ReentrantLock的内部结构,但在模块化系统严格限制下,这种访问方式不再可行。
解决方案
Fastjson2开发团队在2.0.49版本中修复了这个问题。修复方案主要包含以下改进:
- 修改动态类生成逻辑,避免直接访问ReentrantLock的内部类
- 提供对ReentrantLock的标准序列化支持
- 优化模块化环境下的兼容性处理
验证结果
使用修复后的2.0.49版本进行测试,序列化和反序列化ReentrantLock对象都能正常工作:
// 测试代码示例
public class Test {
public static void main(String[] args) {
Bean bean = new Bean();
bean.lock = new ReentrantLock();
byte[] bytes = JSONB.toBytes(bean, JSONWriter.Feature.FieldBased);
Bean bean1 = JSONB.parseObject(bytes, Bean.class, JSONReader.Feature.FieldBased);
System.out.println(bean1.lock); // 正常输出锁对象
}
public static class Bean {
public Lock lock;
}
}
注意事项
虽然修复后的版本可以正常处理ReentrantLock的序列化,但开发者需要注意:
- 序列化后的锁对象会丢失其当前状态(锁定/未锁定)
- 反序列化后会创建一个新的锁实例,而非保持原有锁的引用
- 对于需要保持锁状态的应用场景,建议实现自定义序列化逻辑
总结
Fastjson2在JDK17环境下序列化ReentrantLock的问题展示了Java模块化系统带来的兼容性挑战。通过版本升级到2.0.49及以上,开发者可以避免这类访问控制异常。这也提醒我们在使用新版本JDK时,需要关注依赖库的兼容性更新,特别是涉及反射和动态代码生成的场景。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00