libavif v1.2.0 版本发布:AV1 图像格式库的重大更新
libavif 是一个开源的 AV1 图像格式编解码库,它实现了 AVIF 格式的编码、解码和处理功能。AVIF 是基于 AV1 视频编码器的图像格式,具有出色的压缩效率和图像质量,正在成为下一代图像格式的重要选择。最新发布的 v1.2.0 版本带来了多项重要改进和新特性,进一步提升了库的功能性和稳定性。
核心特性增强
本次更新最显著的变化是移除了多个实验性功能的标记,将它们提升为稳定功能。其中最重要的两项是:
-
增益地图(Gain Map) API:这个功能现在已成为稳定特性,不再需要特殊的编译标志。增益地图技术允许在单一文件中存储不同曝光级别的图像信息,为HDR显示设备提供更好的支持。
-
YCgCo_Re 和 YCgCo_Ro 色彩空间支持:这两种色彩空间转换算法也已从实验状态毕业,现在可以稳定使用。它们的枚举值已更新至最新的CICP规范。
元数据处理改进
新版本在元数据处理方面做出了重要改进:
-
新增了
properties和numProperties字段到avifImage结构中,用于存储和传递libavif无法识别的属性数据。这增强了库对非标准元数据的兼容性。 -
增加了对HEIF第三版修正案中"PixelInformationProperty"语法的实验性支持,需要通过编译标志
AVIF_ENABLE_EXPERIMENTAL_EXTENDED_PIXI启用。 -
改进了对增益地图元数据的处理逻辑,现在会忽略不支持的元数据,并正确处理writer_version大于0的情况。
编码器与解码器优化
在编码和解码方面,v1.2.0带来了多项优化:
-
编码器现在支持处理超大尺寸图像,解决了之前可能存在的限制问题。
-
解码器现在能够正确处理包含非视频轨道(如音频或字幕)的图像序列。
-
改进了对辅助轨道的类型检查,避免将非alpha辅助轨道错误识别为alpha通道。
-
解码器现在能够处理具有奇数Clean Aperture尺寸或偏移的子采样图像。
API变更与弃用
本次版本引入了一些API变更:
-
简化了增益地图API,移除了
enableParsingGainMapMetadata设置,现在只要编译支持就会自动解析增益地图元数据。 -
弃用了
avifEncoder中的量化器相关字段(minQuantizer等),推荐使用quality和qualityAlpha参数替代。 -
弃用了
avifCropRectConvertCleanApertureBox()和avifCleanApertureBoxConvertCropRect()函数,提供了更直观的替代函数。 -
将
AVIF_HEADER_FULL重命名为AVIF_HEADER_DEFAULT,并标记前者为弃用。
新增工具与实用功能
v1.2.0版本新增了一个实用工具:
avifgainmaputil命令行工具:这个工具专门用于处理增益地图相关操作,现在已包含在标准安装包中。
此外还新增了一些实用函数:
-
avifSignedFraction和avifUnsignedFraction结构体,以及相关的转换函数,方便处理分数数据。 -
avifCropRectRequiresUpsampling()函数,用于判断裁剪矩形是否需要上采样。
依赖项更新
libavif v1.2.0同步更新了多个依赖库的版本:
-
AOM编码器更新至v3.12.0,新增了
tune=iq(图像质量)编解码选项。 -
dav1d解码器更新至1.5.1版本。
-
libjpeg更新至v3.0.4。
-
SVT-AV1编码器更新至v3.0.0,支持了无损编码和并行度设置。
其他改进
-
优化了文件结构,现在会写入空的HandlerBox名称字段而非"libavif",节省了7字节空间。
-
改善了属性写入顺序,现在描述性属性会先于转换性属性写入。
-
修复了alpha通道处理中的多个潜在溢出问题。
-
Android JNI支持改进,包括支持16kb页面大小和默认线程数设置为2。
总结
libavif v1.2.0是一个功能丰富的更新版本,将多项实验性功能提升为稳定特性,同时改进了编码和解码的可靠性和灵活性。新版本特别强化了对HDR和增益地图的支持,使AVIF格式在高质量图像应用场景中更具竞争力。对于开发者而言,需要注意一些API的变更和弃用,及时调整代码以适应新版本。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00