libavif v1.2.0 版本发布:AV1 图像格式库的重大更新
libavif 是一个开源的 AV1 图像格式编解码库,它实现了 AVIF 格式的编码、解码和处理功能。AVIF 是基于 AV1 视频编码器的图像格式,具有出色的压缩效率和图像质量,正在成为下一代图像格式的重要选择。最新发布的 v1.2.0 版本带来了多项重要改进和新特性,进一步提升了库的功能性和稳定性。
核心特性增强
本次更新最显著的变化是移除了多个实验性功能的标记,将它们提升为稳定功能。其中最重要的两项是:
-
增益地图(Gain Map) API:这个功能现在已成为稳定特性,不再需要特殊的编译标志。增益地图技术允许在单一文件中存储不同曝光级别的图像信息,为HDR显示设备提供更好的支持。
-
YCgCo_Re 和 YCgCo_Ro 色彩空间支持:这两种色彩空间转换算法也已从实验状态毕业,现在可以稳定使用。它们的枚举值已更新至最新的CICP规范。
元数据处理改进
新版本在元数据处理方面做出了重要改进:
-
新增了
properties
和numProperties
字段到avifImage
结构中,用于存储和传递libavif无法识别的属性数据。这增强了库对非标准元数据的兼容性。 -
增加了对HEIF第三版修正案中"PixelInformationProperty"语法的实验性支持,需要通过编译标志
AVIF_ENABLE_EXPERIMENTAL_EXTENDED_PIXI
启用。 -
改进了对增益地图元数据的处理逻辑,现在会忽略不支持的元数据,并正确处理writer_version大于0的情况。
编码器与解码器优化
在编码和解码方面,v1.2.0带来了多项优化:
-
编码器现在支持处理超大尺寸图像,解决了之前可能存在的限制问题。
-
解码器现在能够正确处理包含非视频轨道(如音频或字幕)的图像序列。
-
改进了对辅助轨道的类型检查,避免将非alpha辅助轨道错误识别为alpha通道。
-
解码器现在能够处理具有奇数Clean Aperture尺寸或偏移的子采样图像。
API变更与弃用
本次版本引入了一些API变更:
-
简化了增益地图API,移除了
enableParsingGainMapMetadata
设置,现在只要编译支持就会自动解析增益地图元数据。 -
弃用了
avifEncoder
中的量化器相关字段(minQuantizer
等),推荐使用quality
和qualityAlpha
参数替代。 -
弃用了
avifCropRectConvertCleanApertureBox()
和avifCleanApertureBoxConvertCropRect()
函数,提供了更直观的替代函数。 -
将
AVIF_HEADER_FULL
重命名为AVIF_HEADER_DEFAULT
,并标记前者为弃用。
新增工具与实用功能
v1.2.0版本新增了一个实用工具:
avifgainmaputil
命令行工具:这个工具专门用于处理增益地图相关操作,现在已包含在标准安装包中。
此外还新增了一些实用函数:
-
avifSignedFraction
和avifUnsignedFraction
结构体,以及相关的转换函数,方便处理分数数据。 -
avifCropRectRequiresUpsampling()
函数,用于判断裁剪矩形是否需要上采样。
依赖项更新
libavif v1.2.0同步更新了多个依赖库的版本:
-
AOM编码器更新至v3.12.0,新增了
tune=iq
(图像质量)编解码选项。 -
dav1d解码器更新至1.5.1版本。
-
libjpeg更新至v3.0.4。
-
SVT-AV1编码器更新至v3.0.0,支持了无损编码和并行度设置。
其他改进
-
优化了文件结构,现在会写入空的HandlerBox名称字段而非"libavif",节省了7字节空间。
-
改善了属性写入顺序,现在描述性属性会先于转换性属性写入。
-
修复了alpha通道处理中的多个潜在溢出问题。
-
Android JNI支持改进,包括支持16kb页面大小和默认线程数设置为2。
总结
libavif v1.2.0是一个功能丰富的更新版本,将多项实验性功能提升为稳定特性,同时改进了编码和解码的可靠性和灵活性。新版本特别强化了对HDR和增益地图的支持,使AVIF格式在高质量图像应用场景中更具竞争力。对于开发者而言,需要注意一些API的变更和弃用,及时调整代码以适应新版本。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









