ESPNet中语音合成模型训练时如何生成时长文件
2025-05-26 17:39:27作者:郁楠烈Hubert
在语音合成(TTS)系统开发过程中,时长文件(duration files)的生成是一个关键步骤,特别是在基于FastSpeech等非自回归模型的训练中。本文将详细介绍在ESPNet框架下生成时长文件的两种主要方法。
什么是时长文件
时长文件是记录每个音素在语音中持续时间的文本文件,格式通常为:
utterance_id duration1 duration2 ... durationN 0
其中每个数字代表对应音素的帧数,最后的0作为结束标记。这种文件对于基于音素的TTS模型训练至关重要,它告诉模型每个音素应该持续多长时间。
方法一:使用MFA(Montreal Forced Aligner)
MFA是一个流行的语音文本对齐工具,可以精确计算音素级别的持续时间。
-
准备阶段:需要确保已安装MFA工具,并准备好以下文件:
- wav.scp:包含音频ID和路径
- text:包含语音转录文本
- 发音词典:定义单词到音素的映射
-
对齐过程:
- 首先将文本转换为音素序列
- 然后使用MFA进行强制对齐,计算每个音素的精确时间位置
- 最后将时间信息转换为帧数并保存为时长文件
-
优势:MFA提供的对齐结果通常非常精确,适合高质量数据集的建模。
方法二:基于注意力机制的自回归模型
当没有现成的对齐工具或MFA不适用于目标语言时,可以采用这种方法:
-
训练自回归模型:
- 首先训练一个基于注意力机制的自回归TTS模型(如Tacotron2)
- 这个模型会在训练过程中自动学习文本和语音之间的对齐关系
-
提取注意力矩阵:
- 使用训练好的自回归模型对训练数据进行前向计算
- 从注意力矩阵中提取最可能的对齐路径
-
转换为时长文件:
- 将对齐路径转换为音素持续时间
- 保存为与MFA相同格式的时长文件
-
适用场景:特别适合资源稀缺语言或当MFA不支持目标语言时。
实际应用建议
-
对于主流语言(如英语、中文),优先考虑使用MFA方法,因为它通常能提供更精确的对齐结果。
-
对于低资源语言,可以先用少量数据训练自回归模型生成初始时长文件,然后用这些时长文件训练第一个FastSpeech模型,迭代优化。
-
在生成时长文件后,建议进行人工检查,特别是对长句子和复杂发音的词汇,确保对齐质量。
-
对于多说话人系统,可以考虑为每个说话人生成单独的时长文件,或使用归一化的时长表示。
通过以上方法,开发者可以在ESPNet框架中有效地为各种语言的TTS模型生成所需的时长文件,为后续的非自回归模型训练奠定基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5