ESPNet中语音合成模型训练时如何生成时长文件
2025-05-26 12:24:32作者:郁楠烈Hubert
在语音合成(TTS)系统开发过程中,时长文件(duration files)的生成是一个关键步骤,特别是在基于FastSpeech等非自回归模型的训练中。本文将详细介绍在ESPNet框架下生成时长文件的两种主要方法。
什么是时长文件
时长文件是记录每个音素在语音中持续时间的文本文件,格式通常为:
utterance_id duration1 duration2 ... durationN 0
其中每个数字代表对应音素的帧数,最后的0作为结束标记。这种文件对于基于音素的TTS模型训练至关重要,它告诉模型每个音素应该持续多长时间。
方法一:使用MFA(Montreal Forced Aligner)
MFA是一个流行的语音文本对齐工具,可以精确计算音素级别的持续时间。
-
准备阶段:需要确保已安装MFA工具,并准备好以下文件:
- wav.scp:包含音频ID和路径
- text:包含语音转录文本
- 发音词典:定义单词到音素的映射
-
对齐过程:
- 首先将文本转换为音素序列
- 然后使用MFA进行强制对齐,计算每个音素的精确时间位置
- 最后将时间信息转换为帧数并保存为时长文件
-
优势:MFA提供的对齐结果通常非常精确,适合高质量数据集的建模。
方法二:基于注意力机制的自回归模型
当没有现成的对齐工具或MFA不适用于目标语言时,可以采用这种方法:
-
训练自回归模型:
- 首先训练一个基于注意力机制的自回归TTS模型(如Tacotron2)
- 这个模型会在训练过程中自动学习文本和语音之间的对齐关系
-
提取注意力矩阵:
- 使用训练好的自回归模型对训练数据进行前向计算
- 从注意力矩阵中提取最可能的对齐路径
-
转换为时长文件:
- 将对齐路径转换为音素持续时间
- 保存为与MFA相同格式的时长文件
-
适用场景:特别适合资源稀缺语言或当MFA不支持目标语言时。
实际应用建议
-
对于主流语言(如英语、中文),优先考虑使用MFA方法,因为它通常能提供更精确的对齐结果。
-
对于低资源语言,可以先用少量数据训练自回归模型生成初始时长文件,然后用这些时长文件训练第一个FastSpeech模型,迭代优化。
-
在生成时长文件后,建议进行人工检查,特别是对长句子和复杂发音的词汇,确保对齐质量。
-
对于多说话人系统,可以考虑为每个说话人生成单独的时长文件,或使用归一化的时长表示。
通过以上方法,开发者可以在ESPNet框架中有效地为各种语言的TTS模型生成所需的时长文件,为后续的非自回归模型训练奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
662