ESPNet中语音合成模型训练时如何生成时长文件
2025-05-26 12:24:32作者:郁楠烈Hubert
在语音合成(TTS)系统开发过程中,时长文件(duration files)的生成是一个关键步骤,特别是在基于FastSpeech等非自回归模型的训练中。本文将详细介绍在ESPNet框架下生成时长文件的两种主要方法。
什么是时长文件
时长文件是记录每个音素在语音中持续时间的文本文件,格式通常为:
utterance_id duration1 duration2 ... durationN 0
其中每个数字代表对应音素的帧数,最后的0作为结束标记。这种文件对于基于音素的TTS模型训练至关重要,它告诉模型每个音素应该持续多长时间。
方法一:使用MFA(Montreal Forced Aligner)
MFA是一个流行的语音文本对齐工具,可以精确计算音素级别的持续时间。
-
准备阶段:需要确保已安装MFA工具,并准备好以下文件:
- wav.scp:包含音频ID和路径
- text:包含语音转录文本
- 发音词典:定义单词到音素的映射
-
对齐过程:
- 首先将文本转换为音素序列
- 然后使用MFA进行强制对齐,计算每个音素的精确时间位置
- 最后将时间信息转换为帧数并保存为时长文件
-
优势:MFA提供的对齐结果通常非常精确,适合高质量数据集的建模。
方法二:基于注意力机制的自回归模型
当没有现成的对齐工具或MFA不适用于目标语言时,可以采用这种方法:
-
训练自回归模型:
- 首先训练一个基于注意力机制的自回归TTS模型(如Tacotron2)
- 这个模型会在训练过程中自动学习文本和语音之间的对齐关系
-
提取注意力矩阵:
- 使用训练好的自回归模型对训练数据进行前向计算
- 从注意力矩阵中提取最可能的对齐路径
-
转换为时长文件:
- 将对齐路径转换为音素持续时间
- 保存为与MFA相同格式的时长文件
-
适用场景:特别适合资源稀缺语言或当MFA不支持目标语言时。
实际应用建议
-
对于主流语言(如英语、中文),优先考虑使用MFA方法,因为它通常能提供更精确的对齐结果。
-
对于低资源语言,可以先用少量数据训练自回归模型生成初始时长文件,然后用这些时长文件训练第一个FastSpeech模型,迭代优化。
-
在生成时长文件后,建议进行人工检查,特别是对长句子和复杂发音的词汇,确保对齐质量。
-
对于多说话人系统,可以考虑为每个说话人生成单独的时长文件,或使用归一化的时长表示。
通过以上方法,开发者可以在ESPNet框架中有效地为各种语言的TTS模型生成所需的时长文件,为后续的非自回归模型训练奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328