从Excel实现中理解多层感知机(MLP)的输入层设计——以ai-by-hand-excel项目为例
2025-06-12 16:15:00作者:田桥桑Industrious
在深度学习模型的实现过程中,输入层的设计往往是最容易被初学者误解的部分之一。本文将以ai-by-hand-excel项目中的多层感知机(MLP)实现为例,深入剖析神经网络输入层的设计原理。
输入层神经元数量的本质
在ai-by-hand-excel项目的Excel实现中,输入层被设计为4个神经元。这可能会让一些学习者产生困惑:为什么输入特征数量与神经元数量直接对应?实际上,这正是神经网络最基础的设计原则之一。
每个输入样本都是一个特征向量,在Excel表格中被表示为列向量。每个特征维度都需要一个独立的神经元来处理,因此:
- 当输入特征维度为4时,输入层就需要4个神经元
- 每个神经元负责接收和处理一个特定的特征值
批处理与输入层的关系
值得注意的是,批处理(batch processing)不会影响输入层的神经元数量。即使我们同时处理多个样本(组成一个batch),输入层的神经元数量仍然由单个样本的特征维度决定。这是因为:
- 批处理是在时间维度上并行处理多个样本
- 每个样本仍然保持原有的特征维度
- 输入层神经元数量是网络结构的固有属性,与同时处理的样本数量无关
线性层的矩阵维度解析
在神经网络中,线性层(nn.Linear)的权重矩阵维度直接由输入输出维度决定。具体来说:
- 如果线性层从4维映射到3维,则权重矩阵应为3×4
- 偏置向量则与输出维度一致,为3维
这种设计确保了矩阵乘法能够正确执行: 输出 = 权重 × 输入 + 偏置 (3×1) = (3×4) × (4×1) + (3×1)
常见误解与澄清
初学者常犯的错误包括:
- 混淆特征维度与样本数量
- 认为批处理会增加神经元数量
- 误解线性层权重矩阵的维度关系
通过Excel这种可视化的实现方式,我们可以更直观地理解这些概念。每个单元格的计算都对应着神经网络中的具体操作,这种"手把手"的实现方式对于深入理解神经网络的工作原理大有裨益。
总结
理解神经网络输入层的设计是掌握深度学习的基础。通过ai-by-hand-excel这样的项目,我们可以:
- 直观看到输入特征与神经元的对应关系
- 明确区分网络结构与数据处理流程
- 深入理解线性变换的矩阵运算本质
这种基础性的理解将为后续学习更复杂的神经网络架构打下坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355