Pangolin项目在Ubuntu 20.04上的编译问题分析与解决方案
问题背景
Pangolin是一个轻量级的3D视觉库,广泛应用于SLAM、计算机视觉等领域。在Ubuntu 20.04系统上编译最新版本的Pangolin时,开发者可能会遇到一些编译错误,主要与OpenEXR库和编译器选项相关。
错误现象
在Ubuntu 20.04(Focal)系统上编译Pangolin时,会出现以下几类错误:
-
OpenEXR相关错误:编译器报告
half.h头文件中的operator=操作符存在deprecated-copy问题,这是由于OpenEXR库的实现方式触发了现代C++的拷贝构造函数弃用警告。 -
编译器选项错误:系统报告无法识别
-Wno-deprecated-register、-Wno-null-pointer-subtraction和-Wno-null-pointer-arithmetic等编译选项。 -
警告被视为错误:由于项目中设置了
-Werror选项,所有警告都会被当作错误处理,导致编译失败。
问题根源分析
经过深入分析,这些问题主要源于以下几个方面:
-
Ubuntu 20.04的编译器版本:该系统默认安装的GCC/G++版本较旧,不支持某些较新的编译器警告选项。
-
OpenEXR库版本兼容性:系统自带的OpenEXR库实现使用了某些在现代C++标准中被认为不安全的编码模式。
-
Pangolin的编译选项配置:项目中的某些编译选项是针对较新版本的编译器设计的,在旧版本编译器上无法识别。
解决方案
临时解决方案
对于急需在Ubuntu 20.04上使用Pangolin的开发者,可以采用以下临时解决方案:
-
修改CMakeLists.txt: 移除不支持的编译器选项,特别是
-Wno-null-pointer-arithmetic和-Wno-null-pointer-subtraction。 -
设置环境变量: 在运行cmake时添加
CXXFLAGS="-Wno-error=deprecated-copy"选项,避免将特定警告视为错误。 -
使用特定版本: 可以考虑使用Pangolin的v0.9版本分支,该版本对Ubuntu 20.04有更好的兼容性。
长期解决方案
对于项目维护者和希望长期稳定使用的开发者,建议:
-
条件编译选项: 在CMake脚本中添加对编译器版本的检测,只在支持的编译器版本上启用特定的警告选项。
-
OpenEXR版本管理: 考虑使用较新版本的OpenEXR库,或者为不同系统版本提供不同的编译配置。
-
CI/CD支持: 在持续集成系统中添加对Ubuntu 20.04的测试支持,确保兼容性。
版本兼容性对比
通过对Ubuntu不同版本的测试,我们发现:
| 系统版本 | 编译表现 |
|---|---|
| Ubuntu 20.04 | 出现多种编译错误,主要与OpenEXR和编译器选项相关 |
| Ubuntu 22.04 | 编译顺利,无警告和错误 |
| Ubuntu 24.04 | 出现少量警告,但不影响编译 |
最佳实践建议
-
升级系统:如果可能,建议将系统升级到Ubuntu 22.04或更高版本,以获得更好的兼容性。
-
容器化开发:考虑使用Docker容器进行开发,可以灵活选择基础镜像版本。
-
版本锁定:对于生产环境,建议锁定Pangolin和依赖库的特定版本,确保稳定性。
结论
Pangolin在Ubuntu 20.04上的编译问题主要源于系统组件版本与项目需求的差异。通过合理的配置调整和版本选择,开发者仍然可以在该平台上成功编译和使用Pangolin。随着Ubuntu 20.04逐步退出主流支持,建议开发者考虑升级到更新的系统版本,以获得更好的开发体验和长期支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00