Higress项目中Token监控数据缺失的原因与解决方案
问题背景
在使用Higress项目时,用户通过Helm部署完成后发现AI Gateway Dashboard中的Token监控数据始终显示为0,而其他监控指标则正常显示。这种情况通常发生在没有正确配置AI相关插件的情况下。
根本原因分析
Token监控数据的缺失并非系统故障,而是由于部署时缺少必要的配置项。Higress的Token监控功能依赖于AI统计插件(ai-statistics)的支持,该插件需要显式启用才能正常工作。
解决方案详解
要解决Token监控数据缺失的问题,需要采取以下步骤:
-
确认部署命令:确保使用正确的Helm部署命令,包括必要的参数设置:
helm install higress -n higress-system higress.io/higress --create-namespace --render-subchart-notes --set global.o11y.enabled=true --set global.enableRedis=true -
启用AI统计插件:这是最关键的一步。AI统计插件负责收集和处理Token相关的监控数据,必须显式配置才能激活Token监控功能。
-
验证配置生效:部署完成后,通过AI Gateway Dashboard检查Token监控数据是否开始正常显示。
技术实现原理
Higress的Token监控功能基于插件机制实现。AI统计插件会拦截API请求,提取Token相关信息并进行统计处理,然后将数据推送到监控系统。当插件未启用时,系统无法获取这些中间数据,导致监控面板显示为0。
最佳实践建议
-
部署前规划:在部署Higress前,应明确是否需要Token监控功能,如需使用则应在部署时一并配置相关插件。
-
监控完整性检查:部署完成后,应全面检查各项监控指标是否正常显示,及时发现类似Token监控缺失的问题。
-
文档查阅:对于Higress的各项功能,特别是插件相关功能,应仔细阅读官方文档了解其依赖关系和配置要求。
总结
Higress项目中Token监控数据的缺失通常是由于AI统计插件未正确配置所致。通过理解其工作原理并按照正确步骤配置,可以轻松解决这一问题。这种模块化设计使得Higress既保持了核心功能的简洁性,又通过插件机制提供了强大的扩展能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00