在smolagents项目中实现动态提示模板变量的最佳实践
2025-05-12 00:18:24作者:柯茵沙
在构建基于smolagents的对话系统时,合理使用提示模板变量可以显著提升系统的灵活性和可维护性。本文将深入探讨如何在smolagents项目中高效地使用静态和动态变量来定制系统提示。
提示模板变量的基本概念
提示模板变量是嵌入在提示文本中的占位符,格式为双大括号包裹的变量名,例如{{ bot_name }}
。这些变量可以在运行时被实际值替换,从而实现提示内容的动态生成。
静态变量的处理
对于不会随对话变化的静态变量(如机器人名称、固定格式指南等),推荐在初始化阶段就完成变量的填充:
from smolagents.agents import populate_template
# 定义包含变量的系统提示模板
CUSTOM_CODE_SYSTEM_PROMPT = """您现在是{{ bot_name }},一个客户支持助手...
{{ formatting_guidelines }}
"""
# 初始化时填充静态变量
agent.prompt_templates["system_prompt"] = populate_template(
CUSTOM_CODE_SYSTEM_PROMPT,
variables={
"bot_name": "客服小助手",
"formatting_guidelines": "请使用礼貌用语,每条回复不超过100字"
}
)
这种方法确保了静态内容只需设置一次,后续对话中保持不变。
动态变量的处理
对于会随对话变化的动态变量(如对话历史、用户上下文等),需要在每次对话前更新:
# 第一次对话
agent.run("用户第一次提问")
# 更新对话历史
conversation_history = "用户: 第一次提问\n助手: 这是回答"
# 更新提示模板中的动态变量
agent.prompt_templates["system_prompt"] = populate_template(
CUSTOM_CODE_SYSTEM_PROMPT,
variables={
"conversation_history": conversation_history
}
)
# 第二次对话
agent.run("用户第二次提问")
混合使用静态和动态变量
在实际应用中,通常需要同时处理静态和动态变量。最佳实践是:
- 在初始化时设置所有静态变量
- 在每次对话前只更新动态变量部分
- 使用字典合并技术避免重复设置静态变量
# 静态变量配置
static_vars = {
"bot_name": "客服小助手",
"formatting_guidelines": "请使用礼貌用语"
}
# 每次对话前
dynamic_vars = {
"conversation_history": get_current_history()
}
agent.prompt_templates["system_prompt"] = populate_template(
CUSTOM_CODE_SYSTEM_PROMPT,
variables={**static_vars, **dynamic_vars}
)
性能优化建议
- 缓存静态模板:对于复杂的静态模板,可以先渲染好静态部分,只动态替换变量部分
- 批量更新:当需要更新多个动态变量时,尽量一次性完成
- 模板预处理:对于频繁使用的模板,考虑预编译或使用更高效的模板引擎
通过合理运用这些技术,开发者可以构建出既灵活又高效的对话系统,满足各种业务场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44