LaVague项目中的Action Engine代码清理功能设计
2025-06-04 09:38:19作者:姚月梅Lane
背景与问题分析
在现代AI驱动的自动化测试领域,LaVague项目作为一个创新的测试框架,其核心组件Action Engine负责执行由AI模型生成的测试脚本。然而,在实际应用中,我们发现不同AI模型生成的代码存在显著的格式差异,这直接影响了Action Engine的执行效果。
主要问题表现
- Hugging Face API问题:生成的代码会延续到markdown单元格之后,包含不必要的HTML内容
- Azure OpenAI问题:代码块以```python标记开头,需要特殊处理
- Mixtral on Fireworks AI问题:生成内容以自然语言回答开头,如"Here is an answer"
这些不一致性导致Action Engine在执行前必须进行代码清理,而当前的清理逻辑可能无法覆盖所有情况。
技术解决方案
设计思路
我们建议为Action Engine引入可配置的清理函数机制,这一设计具有以下优势:
- 灵活性:允许针对不同AI模型定制清理逻辑
- 可扩展性:随着支持模型的增加,只需添加新的清理函数
- 维护性:清理逻辑与核心引擎分离,便于独立维护
实现方案
class ActionEngine:
def __init__(self, cleaning_func=None):
self.cleaning_func = cleaning_func or self.default_cleaner
def default_cleaner(self, code):
"""默认清理逻辑"""
# 基础清理实现
return code
def execute(self, raw_code):
"""执行前先清理代码"""
cleaned_code = self.cleaning_func(raw_code)
# 执行清理后的代码
典型清理函数示例
- Hugging Face清理器:
def hf_cleaner(code):
# 移除---标记后的所有内容
if "---" in code:
code = code.split("---")[0]
return code.strip()
- Azure OpenAI清理器:
def azure_cleaner(code):
# 移除```python标记
if code.startswith("```python"):
code = code[9:]
if code.endswith("```"):
code = code[:-3]
return code.strip()
- Mixtral清理器:
def mixtral_cleaner(code):
# 移除自然语言前缀
prefixes = ["Here is an answer", "Here is the code"]
for prefix in prefixes:
if code.startswith(prefix):
code = code[len(prefix):]
break
return code.strip()
工程实践建议
- 工厂模式应用:可以创建一个清理器工厂,根据模型类型返回对应的清理函数
- 默认清理策略:保留一个保守的默认清理器,处理常见情况
- 日志记录:在执行清理前后记录代码状态,便于调试
- 性能考量:清理函数应保持轻量,避免影响整体执行效率
未来扩展方向
- 机器学习辅助清理:训练小型模型识别和清理不同风格的生成代码
- 用户自定义规则:允许用户提供正则表达式等自定义清理规则
- 多阶段清理:实现由粗到细的多层次清理流程
总结
通过为LaVague项目的Action Engine引入可配置的清理函数机制,我们能够有效解决不同AI模型生成代码的格式差异问题。这一设计不仅提升了框架的适应性,也为未来的功能扩展奠定了良好基础。开发者可以根据实际使用的AI模型选择或自定义最适合的清理策略,确保生成的测试代码能够被正确执行。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K