LaVague项目中的Action Engine代码清理功能设计
2025-06-04 16:56:09作者:姚月梅Lane
背景与问题分析
在现代AI驱动的自动化测试领域,LaVague项目作为一个创新的测试框架,其核心组件Action Engine负责执行由AI模型生成的测试脚本。然而,在实际应用中,我们发现不同AI模型生成的代码存在显著的格式差异,这直接影响了Action Engine的执行效果。
主要问题表现
- Hugging Face API问题:生成的代码会延续到markdown单元格之后,包含不必要的HTML内容
- Azure OpenAI问题:代码块以```python标记开头,需要特殊处理
- Mixtral on Fireworks AI问题:生成内容以自然语言回答开头,如"Here is an answer"
这些不一致性导致Action Engine在执行前必须进行代码清理,而当前的清理逻辑可能无法覆盖所有情况。
技术解决方案
设计思路
我们建议为Action Engine引入可配置的清理函数机制,这一设计具有以下优势:
- 灵活性:允许针对不同AI模型定制清理逻辑
- 可扩展性:随着支持模型的增加,只需添加新的清理函数
- 维护性:清理逻辑与核心引擎分离,便于独立维护
实现方案
class ActionEngine:
def __init__(self, cleaning_func=None):
self.cleaning_func = cleaning_func or self.default_cleaner
def default_cleaner(self, code):
"""默认清理逻辑"""
# 基础清理实现
return code
def execute(self, raw_code):
"""执行前先清理代码"""
cleaned_code = self.cleaning_func(raw_code)
# 执行清理后的代码
典型清理函数示例
- Hugging Face清理器:
def hf_cleaner(code):
# 移除---标记后的所有内容
if "---" in code:
code = code.split("---")[0]
return code.strip()
- Azure OpenAI清理器:
def azure_cleaner(code):
# 移除```python标记
if code.startswith("```python"):
code = code[9:]
if code.endswith("```"):
code = code[:-3]
return code.strip()
- Mixtral清理器:
def mixtral_cleaner(code):
# 移除自然语言前缀
prefixes = ["Here is an answer", "Here is the code"]
for prefix in prefixes:
if code.startswith(prefix):
code = code[len(prefix):]
break
return code.strip()
工程实践建议
- 工厂模式应用:可以创建一个清理器工厂,根据模型类型返回对应的清理函数
- 默认清理策略:保留一个保守的默认清理器,处理常见情况
- 日志记录:在执行清理前后记录代码状态,便于调试
- 性能考量:清理函数应保持轻量,避免影响整体执行效率
未来扩展方向
- 机器学习辅助清理:训练小型模型识别和清理不同风格的生成代码
- 用户自定义规则:允许用户提供正则表达式等自定义清理规则
- 多阶段清理:实现由粗到细的多层次清理流程
总结
通过为LaVague项目的Action Engine引入可配置的清理函数机制,我们能够有效解决不同AI模型生成代码的格式差异问题。这一设计不仅提升了框架的适应性,也为未来的功能扩展奠定了良好基础。开发者可以根据实际使用的AI模型选择或自定义最适合的清理策略,确保生成的测试代码能够被正确执行。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C079
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.45 K
Ascend Extension for PyTorch
Python
272
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
192
79
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692