LaVague项目中的Action Engine代码清理功能设计
2025-06-04 16:56:09作者:姚月梅Lane
背景与问题分析
在现代AI驱动的自动化测试领域,LaVague项目作为一个创新的测试框架,其核心组件Action Engine负责执行由AI模型生成的测试脚本。然而,在实际应用中,我们发现不同AI模型生成的代码存在显著的格式差异,这直接影响了Action Engine的执行效果。
主要问题表现
- Hugging Face API问题:生成的代码会延续到markdown单元格之后,包含不必要的HTML内容
- Azure OpenAI问题:代码块以```python标记开头,需要特殊处理
- Mixtral on Fireworks AI问题:生成内容以自然语言回答开头,如"Here is an answer"
这些不一致性导致Action Engine在执行前必须进行代码清理,而当前的清理逻辑可能无法覆盖所有情况。
技术解决方案
设计思路
我们建议为Action Engine引入可配置的清理函数机制,这一设计具有以下优势:
- 灵活性:允许针对不同AI模型定制清理逻辑
- 可扩展性:随着支持模型的增加,只需添加新的清理函数
- 维护性:清理逻辑与核心引擎分离,便于独立维护
实现方案
class ActionEngine:
def __init__(self, cleaning_func=None):
self.cleaning_func = cleaning_func or self.default_cleaner
def default_cleaner(self, code):
"""默认清理逻辑"""
# 基础清理实现
return code
def execute(self, raw_code):
"""执行前先清理代码"""
cleaned_code = self.cleaning_func(raw_code)
# 执行清理后的代码
典型清理函数示例
- Hugging Face清理器:
def hf_cleaner(code):
# 移除---标记后的所有内容
if "---" in code:
code = code.split("---")[0]
return code.strip()
- Azure OpenAI清理器:
def azure_cleaner(code):
# 移除```python标记
if code.startswith("```python"):
code = code[9:]
if code.endswith("```"):
code = code[:-3]
return code.strip()
- Mixtral清理器:
def mixtral_cleaner(code):
# 移除自然语言前缀
prefixes = ["Here is an answer", "Here is the code"]
for prefix in prefixes:
if code.startswith(prefix):
code = code[len(prefix):]
break
return code.strip()
工程实践建议
- 工厂模式应用:可以创建一个清理器工厂,根据模型类型返回对应的清理函数
- 默认清理策略:保留一个保守的默认清理器,处理常见情况
- 日志记录:在执行清理前后记录代码状态,便于调试
- 性能考量:清理函数应保持轻量,避免影响整体执行效率
未来扩展方向
- 机器学习辅助清理:训练小型模型识别和清理不同风格的生成代码
- 用户自定义规则:允许用户提供正则表达式等自定义清理规则
- 多阶段清理:实现由粗到细的多层次清理流程
总结
通过为LaVague项目的Action Engine引入可配置的清理函数机制,我们能够有效解决不同AI模型生成代码的格式差异问题。这一设计不仅提升了框架的适应性,也为未来的功能扩展奠定了良好基础。开发者可以根据实际使用的AI模型选择或自定义最适合的清理策略,确保生成的测试代码能够被正确执行。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355