使用Pymoo进行化合物多目标优化选择的技术实践
2025-07-01 19:57:37作者:钟日瑜
前言
在药物发现和材料科学领域,研究人员经常需要从大量化合物中筛选出具有最佳性能组合的候选物。本文介绍如何利用Python的多目标优化库Pymoo来实现这一目标,特别针对化合物数据集进行非支配排序和Pareto前沿分析。
问题背景
假设我们有一个包含数千种化合物的数据集,每个化合物都有两个关键属性:不确定性(Uncertainty)和毒性(Toxic)。我们的目标是找到那些在这两个指标上表现最优的化合物,即不确定性尽可能高而毒性尽可能低的组合。
技术方案
1. 数据预处理
首先需要对原始数据进行筛选,去除不符合基本要求的化合物。例如,我们可能只考虑不确定性大于50%且毒性低于50%的化合物:
chunk = chunk[(chunk['Uncertainty']*100 > 50) & (chunk['Toxic']*100 < 50)]
2. 非支配排序实现
Pymoo提供了高效的非支配排序算法,可以直接应用于我们的数据集:
from pymoo.util.nds.non_dominated_sorting import NonDominatedSorting
# 假设df是包含f_1(不确定性)和f_2(毒性)的数据框
objs = ['f_1', 'f_2']
dz = (df
.assign(rank=lambda dd: NonDominatedSorting().do(dd[objs].values, return_rank=True)[1])
.sort_values(['rank'] + objs)
3. 结果可视化
使用Seaborn可以直观地展示不同Pareto等级化合物的分布:
import seaborn as sns
import matplotlib.pyplot as plt
plt.subplots(1, 1, figsize=(12, 4))
sns.scatterplot(data=dz, x='f_1', y='f_2', hue='rank', style='rank', palette="deep")
技术细节解析
非支配排序原理
非支配排序是多目标优化的核心算法,它将解集分为多个前沿(Front):
- 第一前沿包含所有不被其他解支配的解
- 第二前沿包含被第一前沿支配但不被其他解支配的解
- 以此类推...
Pymoo实现优势
Pymoo的非支配排序实现具有以下特点:
- 时间复杂度优化,适合大规模数据集
- 支持并行计算
- 提供多种排序算法变体
实际应用建议
-
数据分块处理:对于超大规模数据集,可以采用分块加载和处理的方式,如原问题中所示。
-
指标归一化:不同指标的量纲可能不同,建议先进行归一化处理。
-
约束处理:可以像示例中那样先进行硬性筛选,也可以在优化过程中作为约束条件处理。
-
结果验证:建议对Pareto前沿上的化合物进行人工验证或实验验证。
扩展应用
这种技术不仅适用于化合物筛选,还可应用于:
- 材料设计中的多属性优化
- 金融投资组合选择
- 工程参数优化设计
总结
使用Pymoo进行多目标优化提供了一种系统、高效的方法来筛选最优化合物。通过非支配排序,我们可以快速识别出Pareto最优解集,为后续研究提供高质量的候选化合物。这种方法结合了计算效率和科学严谨性,是药物发现和材料设计领域的有力工具。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178