使用Pymoo进行化合物多目标优化选择的技术实践
2025-07-01 07:09:25作者:钟日瑜
前言
在药物发现和材料科学领域,研究人员经常需要从大量化合物中筛选出具有最佳性能组合的候选物。本文介绍如何利用Python的多目标优化库Pymoo来实现这一目标,特别针对化合物数据集进行非支配排序和Pareto前沿分析。
问题背景
假设我们有一个包含数千种化合物的数据集,每个化合物都有两个关键属性:不确定性(Uncertainty)和毒性(Toxic)。我们的目标是找到那些在这两个指标上表现最优的化合物,即不确定性尽可能高而毒性尽可能低的组合。
技术方案
1. 数据预处理
首先需要对原始数据进行筛选,去除不符合基本要求的化合物。例如,我们可能只考虑不确定性大于50%且毒性低于50%的化合物:
chunk = chunk[(chunk['Uncertainty']*100 > 50) & (chunk['Toxic']*100 < 50)]
2. 非支配排序实现
Pymoo提供了高效的非支配排序算法,可以直接应用于我们的数据集:
from pymoo.util.nds.non_dominated_sorting import NonDominatedSorting
# 假设df是包含f_1(不确定性)和f_2(毒性)的数据框
objs = ['f_1', 'f_2']
dz = (df
.assign(rank=lambda dd: NonDominatedSorting().do(dd[objs].values, return_rank=True)[1])
.sort_values(['rank'] + objs)
3. 结果可视化
使用Seaborn可以直观地展示不同Pareto等级化合物的分布:
import seaborn as sns
import matplotlib.pyplot as plt
plt.subplots(1, 1, figsize=(12, 4))
sns.scatterplot(data=dz, x='f_1', y='f_2', hue='rank', style='rank', palette="deep")
技术细节解析
非支配排序原理
非支配排序是多目标优化的核心算法,它将解集分为多个前沿(Front):
- 第一前沿包含所有不被其他解支配的解
- 第二前沿包含被第一前沿支配但不被其他解支配的解
- 以此类推...
Pymoo实现优势
Pymoo的非支配排序实现具有以下特点:
- 时间复杂度优化,适合大规模数据集
- 支持并行计算
- 提供多种排序算法变体
实际应用建议
-
数据分块处理:对于超大规模数据集,可以采用分块加载和处理的方式,如原问题中所示。
-
指标归一化:不同指标的量纲可能不同,建议先进行归一化处理。
-
约束处理:可以像示例中那样先进行硬性筛选,也可以在优化过程中作为约束条件处理。
-
结果验证:建议对Pareto前沿上的化合物进行人工验证或实验验证。
扩展应用
这种技术不仅适用于化合物筛选,还可应用于:
- 材料设计中的多属性优化
- 金融投资组合选择
- 工程参数优化设计
总结
使用Pymoo进行多目标优化提供了一种系统、高效的方法来筛选最优化合物。通过非支配排序,我们可以快速识别出Pareto最优解集,为后续研究提供高质量的候选化合物。这种方法结合了计算效率和科学严谨性,是药物发现和材料设计领域的有力工具。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92