vLLM项目中的Ray集群资源动态分配问题分析与解决方案
2025-06-24 00:17:21作者:郜逊炳
背景介绍
vLLM是一个高性能的LLM推理和服务引擎,它支持通过Ray框架实现分布式推理。在实际部署中,当Ray集群资源尚未完全就绪时,vLLM服务启动会立即失败,这给生产环境部署带来了挑战。
问题分析
在Ray集群环境下,vLLM服务启动时会进行严格的资源验证。当请求的GPU数量超过集群当前可用数量时,vLLM会直接抛出错误并终止运行。这种设计虽然能防止资源不足导致的性能问题,但缺乏对动态扩展场景的支持。
核心问题表现为:
- 当Ray集群头节点启动后立即运行vLLM服务时,由于工作节点尚未加入集群,vLLM会因资源不足而失败
- 即使后续有足够资源加入集群,vLLM也不会自动恢复
- 在节点故障或资源波动情况下,缺乏弹性恢复机制
技术验证
通过修改vLLM源码中的资源验证逻辑,我们进行了系列实验:
-
单节点启动场景:
- 原版vLLM:直接因资源不足失败
- 修改版:持续等待直到超时(默认30分钟)
-
动态扩展场景:
- 先启动单节点运行vLLM
- 随后添加工作节点
- 修改版vLLM能自动检测到新资源并成功启动服务
-
节点故障场景:
- 原版vLLM:节点下线后服务不可恢复
- 修改版:能保持运行等待资源恢复
实现原理
vLLM通过Ray的Placement Group机制管理分布式资源。关键修改点在于:
- 移除了严格的资源数量验证
- 利用Ray的自动扩缩容能力
- 保持对Placement Group状态的持续监控
这种修改使得vLLM能够:
- 在资源不足时保持等待而非立即失败
- 自动适应集群资源变化
- 提高在动态环境中的稳定性
生产环境考量
在实际部署中还需注意:
- 网络连接:确保Ray节点间网络通畅,避免因连接问题导致节点被误判为失效
- 超时设置:合理配置等待超时时间,平衡资源等待和服务可用性
- 资源监控:加强集群资源监控,确保最终能获得所需资源
- 区域选择:Ray节点应部署在同一区域,减少网络延迟
未来方向
这一问题的解决为vLLM在Ray集群上的弹性部署奠定了基础。后续可考虑:
- 实现更智能的资源等待策略
- 增加资源不足时的优雅降级能力
- 完善节点故障时的自动恢复机制
- 提供更细粒度的资源监控和管理接口
通过这次技术验证,我们证明了vLLM在动态Ray集群环境中具备更好的适应性和可靠性,为大规模LLM服务部署提供了重要保障。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C031
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.27 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
339
暂无简介
Dart
686
160
Ascend Extension for PyTorch
Python
233
265
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
37
31