vLLM项目中的Ray集群资源动态分配问题分析与解决方案
2025-06-24 21:48:20作者:郜逊炳
背景介绍
vLLM是一个高性能的LLM推理和服务引擎,它支持通过Ray框架实现分布式推理。在实际部署中,当Ray集群资源尚未完全就绪时,vLLM服务启动会立即失败,这给生产环境部署带来了挑战。
问题分析
在Ray集群环境下,vLLM服务启动时会进行严格的资源验证。当请求的GPU数量超过集群当前可用数量时,vLLM会直接抛出错误并终止运行。这种设计虽然能防止资源不足导致的性能问题,但缺乏对动态扩展场景的支持。
核心问题表现为:
- 当Ray集群头节点启动后立即运行vLLM服务时,由于工作节点尚未加入集群,vLLM会因资源不足而失败
- 即使后续有足够资源加入集群,vLLM也不会自动恢复
- 在节点故障或资源波动情况下,缺乏弹性恢复机制
技术验证
通过修改vLLM源码中的资源验证逻辑,我们进行了系列实验:
-
单节点启动场景:
- 原版vLLM:直接因资源不足失败
- 修改版:持续等待直到超时(默认30分钟)
-
动态扩展场景:
- 先启动单节点运行vLLM
- 随后添加工作节点
- 修改版vLLM能自动检测到新资源并成功启动服务
-
节点故障场景:
- 原版vLLM:节点下线后服务不可恢复
- 修改版:能保持运行等待资源恢复
实现原理
vLLM通过Ray的Placement Group机制管理分布式资源。关键修改点在于:
- 移除了严格的资源数量验证
- 利用Ray的自动扩缩容能力
- 保持对Placement Group状态的持续监控
这种修改使得vLLM能够:
- 在资源不足时保持等待而非立即失败
- 自动适应集群资源变化
- 提高在动态环境中的稳定性
生产环境考量
在实际部署中还需注意:
- 网络连接:确保Ray节点间网络通畅,避免因连接问题导致节点被误判为失效
- 超时设置:合理配置等待超时时间,平衡资源等待和服务可用性
- 资源监控:加强集群资源监控,确保最终能获得所需资源
- 区域选择:Ray节点应部署在同一区域,减少网络延迟
未来方向
这一问题的解决为vLLM在Ray集群上的弹性部署奠定了基础。后续可考虑:
- 实现更智能的资源等待策略
- 增加资源不足时的优雅降级能力
- 完善节点故障时的自动恢复机制
- 提供更细粒度的资源监控和管理接口
通过这次技术验证,我们证明了vLLM在动态Ray集群环境中具备更好的适应性和可靠性,为大规模LLM服务部署提供了重要保障。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
Ascend Extension for PyTorch
Python
131
159
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
221
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.5 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
156
206