vLLM项目中的Ray集群资源动态分配问题分析与解决方案
2025-06-24 05:03:53作者:郜逊炳
背景介绍
vLLM是一个高性能的LLM推理和服务引擎,它支持通过Ray框架实现分布式推理。在实际部署中,当Ray集群资源尚未完全就绪时,vLLM服务启动会立即失败,这给生产环境部署带来了挑战。
问题分析
在Ray集群环境下,vLLM服务启动时会进行严格的资源验证。当请求的GPU数量超过集群当前可用数量时,vLLM会直接抛出错误并终止运行。这种设计虽然能防止资源不足导致的性能问题,但缺乏对动态扩展场景的支持。
核心问题表现为:
- 当Ray集群头节点启动后立即运行vLLM服务时,由于工作节点尚未加入集群,vLLM会因资源不足而失败
- 即使后续有足够资源加入集群,vLLM也不会自动恢复
- 在节点故障或资源波动情况下,缺乏弹性恢复机制
技术验证
通过修改vLLM源码中的资源验证逻辑,我们进行了系列实验:
-
单节点启动场景:
- 原版vLLM:直接因资源不足失败
- 修改版:持续等待直到超时(默认30分钟)
-
动态扩展场景:
- 先启动单节点运行vLLM
- 随后添加工作节点
- 修改版vLLM能自动检测到新资源并成功启动服务
-
节点故障场景:
- 原版vLLM:节点下线后服务不可恢复
- 修改版:能保持运行等待资源恢复
实现原理
vLLM通过Ray的Placement Group机制管理分布式资源。关键修改点在于:
- 移除了严格的资源数量验证
- 利用Ray的自动扩缩容能力
- 保持对Placement Group状态的持续监控
这种修改使得vLLM能够:
- 在资源不足时保持等待而非立即失败
- 自动适应集群资源变化
- 提高在动态环境中的稳定性
生产环境考量
在实际部署中还需注意:
- 网络连接:确保Ray节点间网络通畅,避免因连接问题导致节点被误判为失效
- 超时设置:合理配置等待超时时间,平衡资源等待和服务可用性
- 资源监控:加强集群资源监控,确保最终能获得所需资源
- 区域选择:Ray节点应部署在同一区域,减少网络延迟
未来方向
这一问题的解决为vLLM在Ray集群上的弹性部署奠定了基础。后续可考虑:
- 实现更智能的资源等待策略
- 增加资源不足时的优雅降级能力
- 完善节点故障时的自动恢复机制
- 提供更细粒度的资源监控和管理接口
通过这次技术验证,我们证明了vLLM在动态Ray集群环境中具备更好的适应性和可靠性,为大规模LLM服务部署提供了重要保障。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0124AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.28 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
72

暂无简介
Dart
527
116

仓颉编程语言运行时与标准库。
Cangjie
122
91

React Native鸿蒙化仓库
JavaScript
215
289

Ascend Extension for PyTorch
Python
70
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
567
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
400