概率机器学习教材(PML Book)中联合高斯分布问题的数学修正
在概率机器学习经典教材《PML Book》的问题3.5解答中,关于联合高斯随机变量期望计算的数学表达式存在一处需要修正的错误。本文将详细分析这个错误及其修正过程,并借此机会深入探讨高斯分布与联合高斯分布的重要概念差异。
问题背景
问题3.5考察的是两个随机变量X和Y的联合分布特性。题目设定X为标准正态分布N(0,1),而Y的定义为: Y = X·Z,其中Z是与X独立的伯努利随机变量,取值为±1,概率各为0.5。
原解答中的错误
原解答在计算E[XY]时给出了如下表达式: E[XY] = ... = -1·0.5·E[X·-X] + 1·0.5·E[X·X] = 0
这个表达式中的-1和1系数是不正确的。正确的推导应该直接考虑Y的定义Y=X·Z,因此: E[XY] = E[X·X·Z] = E[X²]·E[Z] (因为X和Z独立) 由于E[Z] = 0,所以最终结果E[XY]=0是正确的,但中间步骤的表达式需要修正。
高斯分布与联合高斯分布的关键区别
这个例子特别值得深入探讨,因为它展示了一个重要现象:两个边缘分布都是高斯分布的随机变量,其联合分布不一定是联合高斯分布。
-
边缘高斯性:X~N(0,1),Y|X=+x~N(0,x²),Y|X=-x~N(0,x²),因此Y的边缘分布也是N(0,1)
-
非联合高斯性:虽然X和Y各自是高斯分布,但它们的联合分布不是二维高斯分布。这可以从Y=X·Z的结构看出,联合分布实际上是两个斜线分布的混合。
-
独立性检验:E[XY]=0表示X和Y不相关,但由于联合分布不是高斯的,不相关并不意味着独立。实际上,X和Y明显不独立,因为Y的值依赖于X。
教学意义
这个例子在概率教学中非常经典,它强调了:
- 联合高斯分布比边缘高斯分布有更强的要求
- 对于非高斯分布,不相关≠独立
- 在分析随机变量关系时,必须考虑联合分布的特性
结论
《PML Book》作为概率机器学习领域的重要教材,通过这个练习帮助读者深入理解高斯分布的性质。虽然原解答在推导步骤中存在一处系数错误,但最终结论正确。这个修正过程本身也为我们提供了深入思考概率概念的机会,体现了数学严谨性在机器学习中的重要性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00