概率机器学习教材(PML Book)中联合高斯分布问题的数学修正
在概率机器学习经典教材《PML Book》的问题3.5解答中,关于联合高斯随机变量期望计算的数学表达式存在一处需要修正的错误。本文将详细分析这个错误及其修正过程,并借此机会深入探讨高斯分布与联合高斯分布的重要概念差异。
问题背景
问题3.5考察的是两个随机变量X和Y的联合分布特性。题目设定X为标准正态分布N(0,1),而Y的定义为: Y = X·Z,其中Z是与X独立的伯努利随机变量,取值为±1,概率各为0.5。
原解答中的错误
原解答在计算E[XY]时给出了如下表达式: E[XY] = ... = -1·0.5·E[X·-X] + 1·0.5·E[X·X] = 0
这个表达式中的-1和1系数是不正确的。正确的推导应该直接考虑Y的定义Y=X·Z,因此: E[XY] = E[X·X·Z] = E[X²]·E[Z] (因为X和Z独立) 由于E[Z] = 0,所以最终结果E[XY]=0是正确的,但中间步骤的表达式需要修正。
高斯分布与联合高斯分布的关键区别
这个例子特别值得深入探讨,因为它展示了一个重要现象:两个边缘分布都是高斯分布的随机变量,其联合分布不一定是联合高斯分布。
-
边缘高斯性:X~N(0,1),Y|X=+x~N(0,x²),Y|X=-x~N(0,x²),因此Y的边缘分布也是N(0,1)
-
非联合高斯性:虽然X和Y各自是高斯分布,但它们的联合分布不是二维高斯分布。这可以从Y=X·Z的结构看出,联合分布实际上是两个斜线分布的混合。
-
独立性检验:E[XY]=0表示X和Y不相关,但由于联合分布不是高斯的,不相关并不意味着独立。实际上,X和Y明显不独立,因为Y的值依赖于X。
教学意义
这个例子在概率教学中非常经典,它强调了:
- 联合高斯分布比边缘高斯分布有更强的要求
- 对于非高斯分布,不相关≠独立
- 在分析随机变量关系时,必须考虑联合分布的特性
结论
《PML Book》作为概率机器学习领域的重要教材,通过这个练习帮助读者深入理解高斯分布的性质。虽然原解答在推导步骤中存在一处系数错误,但最终结论正确。这个修正过程本身也为我们提供了深入思考概率概念的机会,体现了数学严谨性在机器学习中的重要性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00