概率机器学习教材(PML Book)中联合高斯分布问题的数学修正
在概率机器学习经典教材《PML Book》的问题3.5解答中,关于联合高斯随机变量期望计算的数学表达式存在一处需要修正的错误。本文将详细分析这个错误及其修正过程,并借此机会深入探讨高斯分布与联合高斯分布的重要概念差异。
问题背景
问题3.5考察的是两个随机变量X和Y的联合分布特性。题目设定X为标准正态分布N(0,1),而Y的定义为: Y = X·Z,其中Z是与X独立的伯努利随机变量,取值为±1,概率各为0.5。
原解答中的错误
原解答在计算E[XY]时给出了如下表达式: E[XY] = ... = -1·0.5·E[X·-X] + 1·0.5·E[X·X] = 0
这个表达式中的-1和1系数是不正确的。正确的推导应该直接考虑Y的定义Y=X·Z,因此: E[XY] = E[X·X·Z] = E[X²]·E[Z] (因为X和Z独立) 由于E[Z] = 0,所以最终结果E[XY]=0是正确的,但中间步骤的表达式需要修正。
高斯分布与联合高斯分布的关键区别
这个例子特别值得深入探讨,因为它展示了一个重要现象:两个边缘分布都是高斯分布的随机变量,其联合分布不一定是联合高斯分布。
-
边缘高斯性:X~N(0,1),Y|X=+x~N(0,x²),Y|X=-x~N(0,x²),因此Y的边缘分布也是N(0,1)
-
非联合高斯性:虽然X和Y各自是高斯分布,但它们的联合分布不是二维高斯分布。这可以从Y=X·Z的结构看出,联合分布实际上是两个斜线分布的混合。
-
独立性检验:E[XY]=0表示X和Y不相关,但由于联合分布不是高斯的,不相关并不意味着独立。实际上,X和Y明显不独立,因为Y的值依赖于X。
教学意义
这个例子在概率教学中非常经典,它强调了:
- 联合高斯分布比边缘高斯分布有更强的要求
- 对于非高斯分布,不相关≠独立
- 在分析随机变量关系时,必须考虑联合分布的特性
结论
《PML Book》作为概率机器学习领域的重要教材,通过这个练习帮助读者深入理解高斯分布的性质。虽然原解答在推导步骤中存在一处系数错误,但最终结论正确。这个修正过程本身也为我们提供了深入思考概率概念的机会,体现了数学严谨性在机器学习中的重要性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00