FlairNLP项目:如何将UMLS Metathesaurus集成到实体链接模型中
2025-05-15 14:33:00作者:侯霆垣
在自然语言处理领域,实体链接是将文本中提到的实体与知识库中标准概念相连接的重要任务。FlairNLP作为一个强大的NLP框架,提供了灵活的实体链接功能。本文将详细介绍如何在FlairNLP中集成UMLS Metathesaurus这一广泛使用的生物医学知识库。
UMLS Metathesaurus简介
统一医学语言系统(UMLS)是美国国立医学图书馆开发的大型生物医学知识库,包含来自200多个源词汇表的超过300万个概念。MRCONSO.RRF文件是UMLS的核心文件之一,记录了概念名称与唯一标识符(CUI)的映射关系。
准备工作
要使用UMLS,首先需要从官方网站获取授权并下载数据包。UMLS数据通常以压缩包形式提供,解压后可以得到MRCONSO.RRF文件,该文件包含了概念名称与标识符的映射关系。
数据预处理
处理MRCONSO.RRF文件的关键步骤包括:
- 提取英文概念(可根据需要保留其他语言)
- 构建名称到概念ID的映射字典
- 处理重复名称和多个ID的情况
以下是处理该文件的Python代码示例:
name_to_ids = {}
with open("MRCONSO.RRF", "r") as fp:
for line in fp:
parts = line.rstrip("\n").split("|")
cui, lang, name = parts[0], parts[1], parts[14]
if lang != "ENG":
continue
if name not in name_to_ids:
name_to_ids[name] = set()
name_to_ids[name].add(cui)
name_to_ids = {k: list(v) for k, v in name_to_ids.items()}
创建实体链接词典
FlairNLP提供了InMemoryEntityLinkingDictionary类来存储实体链接所需的词典数据。我们可以将处理好的UMLS数据转换为该类的输入格式:
from flair.datasets.entity_linking import InMemoryEntityLinkingDictionary, EntityCandidate
candidates = [
EntityCandidate(
concept_id=ids[0],
concept_name=name,
additional_ids=ids[1:],
database_name="UMLS",
)
for name, ids in name_to_ids.items()
]
dictionary = InMemoryEntityLinkingDictionary(
candidates=candidates,
dataset_name="UMLS"
)
构建实体链接模型
由于SapBERT模型是在PubMed文献上预训练并在UMLS上进行微调的,它非常适合作为UMLS实体链接的基础模型:
from flair.models import EntityMentionLinker
model_name = "cambridgeltl/SapBERT-from-PubMedBERT-fulltext"
linker = EntityMentionLinker.build(
model_name,
dictionary=dictionary,
hybrid_search=False,
entity_type="UMLS",
)
注意事项
- 内存消耗:UMLS规模庞大,全量加载会消耗大量内存,建议根据应用场景进行适当筛选
- 预处理优化:可根据具体需求对原始数据进行更精细的处理,如过滤特定语义类型的概念
- 性能调优:对于大规模应用,可以考虑使用混合搜索(hybrid_search=True)或数据库后端替代内存词典
应用场景
集成UMLS后的实体链接模型可应用于:
- 电子病历中的医学术语标准化
- 生物医学文献挖掘
- 临床决策支持系统
- 医学问答系统
通过本文介绍的方法,研究人员和开发者可以灵活地将UMLS这样的专业领域知识库集成到FlairNLP框架中,构建强大的生物医学文本处理管道。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19