FlairNLP项目:如何将UMLS Metathesaurus集成到实体链接模型中
2025-05-15 18:10:31作者:侯霆垣
在自然语言处理领域,实体链接是将文本中提到的实体与知识库中标准概念相连接的重要任务。FlairNLP作为一个强大的NLP框架,提供了灵活的实体链接功能。本文将详细介绍如何在FlairNLP中集成UMLS Metathesaurus这一广泛使用的生物医学知识库。
UMLS Metathesaurus简介
统一医学语言系统(UMLS)是美国国立医学图书馆开发的大型生物医学知识库,包含来自200多个源词汇表的超过300万个概念。MRCONSO.RRF文件是UMLS的核心文件之一,记录了概念名称与唯一标识符(CUI)的映射关系。
准备工作
要使用UMLS,首先需要从官方网站获取授权并下载数据包。UMLS数据通常以压缩包形式提供,解压后可以得到MRCONSO.RRF文件,该文件包含了概念名称与标识符的映射关系。
数据预处理
处理MRCONSO.RRF文件的关键步骤包括:
- 提取英文概念(可根据需要保留其他语言)
- 构建名称到概念ID的映射字典
- 处理重复名称和多个ID的情况
以下是处理该文件的Python代码示例:
name_to_ids = {}
with open("MRCONSO.RRF", "r") as fp:
for line in fp:
parts = line.rstrip("\n").split("|")
cui, lang, name = parts[0], parts[1], parts[14]
if lang != "ENG":
continue
if name not in name_to_ids:
name_to_ids[name] = set()
name_to_ids[name].add(cui)
name_to_ids = {k: list(v) for k, v in name_to_ids.items()}
创建实体链接词典
FlairNLP提供了InMemoryEntityLinkingDictionary类来存储实体链接所需的词典数据。我们可以将处理好的UMLS数据转换为该类的输入格式:
from flair.datasets.entity_linking import InMemoryEntityLinkingDictionary, EntityCandidate
candidates = [
EntityCandidate(
concept_id=ids[0],
concept_name=name,
additional_ids=ids[1:],
database_name="UMLS",
)
for name, ids in name_to_ids.items()
]
dictionary = InMemoryEntityLinkingDictionary(
candidates=candidates,
dataset_name="UMLS"
)
构建实体链接模型
由于SapBERT模型是在PubMed文献上预训练并在UMLS上进行微调的,它非常适合作为UMLS实体链接的基础模型:
from flair.models import EntityMentionLinker
model_name = "cambridgeltl/SapBERT-from-PubMedBERT-fulltext"
linker = EntityMentionLinker.build(
model_name,
dictionary=dictionary,
hybrid_search=False,
entity_type="UMLS",
)
注意事项
- 内存消耗:UMLS规模庞大,全量加载会消耗大量内存,建议根据应用场景进行适当筛选
- 预处理优化:可根据具体需求对原始数据进行更精细的处理,如过滤特定语义类型的概念
- 性能调优:对于大规模应用,可以考虑使用混合搜索(hybrid_search=True)或数据库后端替代内存词典
应用场景
集成UMLS后的实体链接模型可应用于:
- 电子病历中的医学术语标准化
- 生物医学文献挖掘
- 临床决策支持系统
- 医学问答系统
通过本文介绍的方法,研究人员和开发者可以灵活地将UMLS这样的专业领域知识库集成到FlairNLP框架中,构建强大的生物医学文本处理管道。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92