FlairNLP项目:如何将UMLS Metathesaurus集成到实体链接模型中
2025-05-15 07:53:51作者:侯霆垣
在自然语言处理领域,实体链接是将文本中提到的实体与知识库中标准概念相连接的重要任务。FlairNLP作为一个强大的NLP框架,提供了灵活的实体链接功能。本文将详细介绍如何在FlairNLP中集成UMLS Metathesaurus这一广泛使用的生物医学知识库。
UMLS Metathesaurus简介
统一医学语言系统(UMLS)是美国国立医学图书馆开发的大型生物医学知识库,包含来自200多个源词汇表的超过300万个概念。MRCONSO.RRF文件是UMLS的核心文件之一,记录了概念名称与唯一标识符(CUI)的映射关系。
准备工作
要使用UMLS,首先需要从官方网站获取授权并下载数据包。UMLS数据通常以压缩包形式提供,解压后可以得到MRCONSO.RRF文件,该文件包含了概念名称与标识符的映射关系。
数据预处理
处理MRCONSO.RRF文件的关键步骤包括:
- 提取英文概念(可根据需要保留其他语言)
- 构建名称到概念ID的映射字典
- 处理重复名称和多个ID的情况
以下是处理该文件的Python代码示例:
name_to_ids = {}
with open("MRCONSO.RRF", "r") as fp:
for line in fp:
parts = line.rstrip("\n").split("|")
cui, lang, name = parts[0], parts[1], parts[14]
if lang != "ENG":
continue
if name not in name_to_ids:
name_to_ids[name] = set()
name_to_ids[name].add(cui)
name_to_ids = {k: list(v) for k, v in name_to_ids.items()}
创建实体链接词典
FlairNLP提供了InMemoryEntityLinkingDictionary类来存储实体链接所需的词典数据。我们可以将处理好的UMLS数据转换为该类的输入格式:
from flair.datasets.entity_linking import InMemoryEntityLinkingDictionary, EntityCandidate
candidates = [
EntityCandidate(
concept_id=ids[0],
concept_name=name,
additional_ids=ids[1:],
database_name="UMLS",
)
for name, ids in name_to_ids.items()
]
dictionary = InMemoryEntityLinkingDictionary(
candidates=candidates,
dataset_name="UMLS"
)
构建实体链接模型
由于SapBERT模型是在PubMed文献上预训练并在UMLS上进行微调的,它非常适合作为UMLS实体链接的基础模型:
from flair.models import EntityMentionLinker
model_name = "cambridgeltl/SapBERT-from-PubMedBERT-fulltext"
linker = EntityMentionLinker.build(
model_name,
dictionary=dictionary,
hybrid_search=False,
entity_type="UMLS",
)
注意事项
- 内存消耗:UMLS规模庞大,全量加载会消耗大量内存,建议根据应用场景进行适当筛选
- 预处理优化:可根据具体需求对原始数据进行更精细的处理,如过滤特定语义类型的概念
- 性能调优:对于大规模应用,可以考虑使用混合搜索(hybrid_search=True)或数据库后端替代内存词典
应用场景
集成UMLS后的实体链接模型可应用于:
- 电子病历中的医学术语标准化
- 生物医学文献挖掘
- 临床决策支持系统
- 医学问答系统
通过本文介绍的方法,研究人员和开发者可以灵活地将UMLS这样的专业领域知识库集成到FlairNLP框架中,构建强大的生物医学文本处理管道。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193