OnmyojiAutoScript斗技模块OCR识别异常问题分析
2025-07-01 12:33:44作者:范垣楠Rhoda
问题背景
在OnmyojiAutoScript自动化脚本项目中,斗技模块(Duel)出现了一个影响功能正常运行的异常情况。当用户尝试使用斗技功能时,脚本会在主界面停滞不前,无法继续执行后续操作。经过分析,这一问题与OCR识别功能密切相关。
问题现象
当脚本运行至斗技模块时,系统会尝试通过OCR技术识别当前斗技分数。然而在某些情况下,OCR识别结果会出现异常值,导致脚本逻辑判断失效。具体表现为:
- 脚本卡在斗技主界面无法继续执行
- 日志显示OCR识别结果超出预期范围
- 程序抛出异常或进入死循环
技术分析
核心问题定位
问题的根源在于check_score方法中的OCR识别结果处理逻辑。该方法设计用于检查玩家是否达到目标斗技分数,其核心逻辑如下:
def check_score(self, target: int) -> int or None:
while 1:
self.screenshot()
if self.appear(self.I_D_CELEB_STAR) or self.appear(self.I_D_CELEB_HONOR):
logger.info('You are already a celeb')
return None
current_score = self.O_D_SCORE.ocr(self.device.image)
if current_score < 1200 or current_score > 3000:
continue
return current_score if current_score <= target else None
问题原因
- OCR识别异常:当OCR无法正确识别分数时,可能返回0或其他异常值
- 范围限制过严:代码预设分数必须在1200-3000之间,否则会持续重试
- 缺乏错误处理:对OCR识别失败的情况没有完善的容错机制
解决方案
临时解决方案
对于普通用户,可以尝试以下临时解决方案:
- 确保游戏界面清晰,避免分数显示区域被遮挡
- 调整游戏分辨率设置,使分数显示更易识别
- 在良好网络环境下运行脚本,减少识别干扰
代码层面优化建议
对于开发者,建议从以下几个方向进行改进:
- 增加OCR结果校验:对识别结果进行有效性验证
- 扩展分数范围:适当放宽分数限制条件
- 添加超时机制:避免无限循环
- 完善日志记录:便于问题追踪
改进后的代码逻辑可参考:
def check_score(self, target: int, max_retry=5) -> int or None:
retry_count = 0
while retry_count < max_retry:
self.screenshot()
if self.appear(self.I_D_CELEB_STAR) or self.appear(self.I_D_CELEB_HONOR):
logger.info('Already reached celebrity rank')
return None
try:
current_score = self.O_D_SCORE.ocr(self.device.image)
if 800 <= current_score <= 3500: # 放宽分数范围
return current_score if current_score <= target else None
logger.warning(f'Unexpected score value: {current_score}')
except Exception as e:
logger.error(f'OCR recognition error: {str(e)}')
retry_count += 1
time.sleep(1)
logger.error('Failed to get valid score after multiple attempts')
return None
技术延伸
OCR在游戏自动化中的应用挑战
- 字体多样性:不同游戏、不同界面可能使用不同字体
- 背景干扰:复杂的游戏背景会影响识别准确率
- 动态元素:闪烁、动画等效果会增加识别难度
- 多语言支持:需要处理不同语言的数字显示方式
最佳实践建议
- 实现多阶段验证机制
- 结合图像匹配和OCR技术
- 添加人工复核接口
- 建立完善的错误恢复流程
总结
OnmyojiAutoScript斗技模块的这一问题典型地展示了游戏自动化中OCR技术应用的挑战。通过分析我们了解到,健壮的自动化脚本需要充分考虑各种边界情况,并建立完善的错误处理机制。未来随着项目的发展,建议对核心识别模块进行持续优化,提升脚本的稳定性和适应性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355