《使用教程:threejs-miniprogram for 微信小程序》
1. 项目的目录结构及介绍
在threejs-miniprogram项目中,目录结构通常包括以下几个主要部分:
-
example:此目录包含了演示如何使用库的示例代码。你可以在这里找到实际运行的小程序实例,以便理解库的功能和集成方式。 -
src:源代码目录,其中包含了threejs-miniprogram的核心实现。 -
eslintrc.js:ESLint配置文件,用于保证代码风格的一致性。 -
.gitignore:定义了Git应该忽略哪些文件或目录,防止不必要的文件被提交到版本控制。 -
.npmignore:定义了npm包发布时应该忽略的文件或目录。 -
npmrc:npm的配置文件,可能包含了特定的npm设置。 -
LICENSE:项目许可证,说明了该项目的授权条款。 -
README.md:项目的主要介绍文件,提供了项目的概述、安装和使用指南。 -
package-lock.json和package.json:这两个文件管理着项目依赖和元数据,package-lock.json确保了团队成员之间的一致性,而package.json包含了项目的基本信息和脚本。
2. 项目的启动文件介绍
由于threejs-miniprogram是一个适用于微信小程序的库,而不是独立的应用程序,所以并没有传统的"启动文件"。然而,在微信小程序开发中,你通常会在pages目录下的某个.json、.wxml(结构文件)、.wxss(样式文件)和.js(逻辑文件)组合中初始化对threejs-miniprogram的使用。例如,在index.js中可能会有类似如下的代码来导入和初始化:
import { createScopedThreejs } from 'threejs-miniprogram';
Page({
...
onReady() {
const query = wx.createSelectorQuery();
query.select('#canvas').fields({ node: true, size: true }).exec((res) => {
const canvas = res[0].node;
const scopedTHREE = createScopedThreejs(canvas);
// 这里继续使用scopedTHREE进行Three.js的相关设置和初始化
});
},
});
3. 项目的配置文件介绍
微信小程序的配置主要在project.config.json文件中进行,但该配置文件不包含在threejs-miniprogram库内,因为它属于你的小程序项目。project.config.json用于指定小程序的基础配置,包括:
-
miniprogramRoot:小程序的源码目录。 -
compileType:编译类型,可以选择快速迭代或标准模式。 -
qcloudVersion:腾讯云相关插件的版本号。 -
usingComponents:全局自定义组件配置。 -
setting:其他项目级设置,比如启用ES6语法等。
要使用threejs-miniprogram,你需要在自己的小程序项目中配置好npm环境,然后通过npm install threejs-miniprogram安装依赖,并在小程序的页面中引入和使用。
在使用过程中,还需要确保在微信开发者工具中进行了构建npm操作,以便将node_modules里的依赖打包进小程序。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00