探索3D扫描的新边界 - 3DScanR
2024-06-14 21:46:37作者:范垣楠Rhoda
探索3D扫描的新边界 - 3DScanR
1、项目介绍
3DScanR 是一款基于iPhone或iPad的高效3D扫描应用,它将先进的增强现实(AR)技术和点云处理库结合在一起,让你在几秒钟内就能创建并查看3D模型,还能将其导出到你的Google Drive账户。只需简单的操作,就可以实现对真实环境物体的精确数字化复刻。
2、项目技术分析
3DScanR的核心是利用苹果的ARKit框架,该框架能检测表面特征点,这一过程类似于我们的眼睛捕捉世界的关键细节。然后,这些特征点通过点云库(PCL)进行处理,构建出一个三维表面模型。这个模型不仅可以在AR模式下实时查看,还可以轻松地导出,方便进一步的应用和分享。
在开发过程中,我们克服了在设备上构建PCL静态库的挑战,并已包含了所需的库文件在PCL_Build_Artifacts目录中,使得开发者可以直接导入并运行项目。
3、项目及技术应用场景
- 设计与建模:设计师可以快速获取实物的3D模型,用于产品设计和模拟。
- 教育与科研:学生和研究人员能够以更直观的方式学习复杂结构,如地质构造或生物形态。
- 艺术与创意:艺术家可以通过扫描现实世界中的物品,创造独特的3D艺术作品。
- 修复与测量:为古迹保护和建筑修复提供精确的数据支持。
- 家居装饰:帮助消费者预览家具在家中的摆放效果。
4、项目特点
- 即时扫描:只需数秒,即可完成3D扫描,节省时间和精力。
- AR集成:通过ARKit实现沉浸式查看,使模型与现实世界无缝融合。
- 兼容性强:支持所有ARKit兼容的iOS设备,普及性广。
- 便捷导出:直接将模型保存至Google Drive,便于分享和后续处理。
- 开放源码:项目完全免费且开源,鼓励开发者贡献和改进。
现在就下载3DScanR,开启你的3D扫描之旅吧!如果你有兴趣参与开发或者遇到问题,欢迎在GitHub上打开issue,让我们共同推进这项技术的发展。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python案例资源下载 - 从入门到精通的完整项目代码合集 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
664
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
298
Ascend Extension for PyTorch
Python
216
236
React Native鸿蒙化仓库
JavaScript
255
320
仓颉编译器源码及 cjdb 调试工具。
C++
133
866
仓颉编程语言运行时与标准库。
Cangjie
140
875
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
仓颉编程语言开发者文档。
59
818