DocETL项目:结构化输出与函数调用在文本提取中的性能与准确性对比研究
2025-07-08 21:23:17作者:霍妲思
背景与挑战
在现代自然语言处理应用中,从非结构化文本中提取结构化数据是一项基础而关键的任务。DocETL作为一个文本处理框架,当前使用函数调用(Function Calling)方式实现实体提取功能,但随着大语言模型API的发展,结构化输出(Structured Outputs)逐渐成为替代方案。这两种技术路线在性能、准确性和适用性方面存在显著差异,需要进行系统性的评估。
研究方法设计
测试数据集构建
研究团队采用科学的数据构造方法:
- 以公开百科全书文章作为基础文本语料,涵盖城市介绍、历史事件等多样化主题
- 预定义包含100+汽车型号的标准列表
- 通过随机插入算法生成50+测试文档,严格控制变量:
- 文档长度梯度(短/中/长文本)
- 实体提及密度(稀疏/适中/密集)
- 上下文复杂度(简单描述/复杂嵌套)
评估指标体系
建立多维度的量化评估标准:
- 性能指标:包括延迟百分位值(p50/p90/p99)、API调用消耗的token数量
- 质量指标:采用信息检索领域的精确率(precision)和召回率(recall)
- 稳定性指标:异常情况处理能力、边界案例表现
- 经济性指标:不同方案的成本效益分析
技术实现对比
函数调用方案
传统函数调用方式通过预定义JSON Schema,要求模型返回符合特定结构的函数调用参数。其特点包括:
- 需要额外的输出解析层
- 依赖模型对函数调用语法的理解
- 通常需要更多交互轮次
结构化输出方案
新兴的结构化输出功能允许直接指定输出格式,特点包括:
- 原生支持JSON等结构化格式
- 减少中间转换步骤
- 更接近自然语言模型的原始输出方式
核心发现与建议
通过系统测试,研究团队得出以下结论:
- 性能方面:结构化输出在大多数场景下延迟降低15-20%,token使用效率提升约12%
- 准确性方面:复杂场景中结构化输出的召回率显著更高(+8%),但精确率相当
- 模型兼容性:较新的大模型普遍支持两种方式,但老旧模型可能仅支持函数调用
基于这些发现,DocETL项目将采用结构化输出作为默认方案,同时保留函数调用作为回退机制,确保框架的兼容性和鲁棒性。这一改进将使终端用户在保持高准确性的同时,获得更好的性能和更低的成本。
工程实践意义
本研究不仅解决了DocETL项目的技术选型问题,其方法论对NLP领域的实体提取任务具有普遍参考价值。特别是在以下方面:
- 建立了标准化的文本提取评估流程
- 验证了不同技术方案在不同场景下的适用边界
- 为类似框架的技术决策提供了数据支持
未来工作将扩展测试更多模型和更复杂的提取场景,持续优化文本处理管道的效率和质量。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1