IronRDP项目中的PNG解码内存溢出问题分析与防护
2025-07-01 14:22:40作者:房伟宁
在远程桌面协议(RDP)的实现中,剪贴板重定向(Clipboard Redirection)是一个重要功能,它允许客户端和服务器之间共享剪贴板内容。IronRDP作为RDP协议的Rust实现,其剪贴板重定向模块在处理特定格式数据时被发现存在潜在的内存安全问题。
问题背景
在IronRDP的剪贴板格式处理模块中,当解码PNG格式的位图数据时,系统会调用decode_png函数。这个函数内部使用Rust的png库来解析PNG图像数据。问题出在对输出缓冲区大小的处理上——代码直接使用了png库计算出的output_buffer_size值来创建Vec缓冲区,而没有进行任何大小限制检查。
技术细节分析
PNG文件头中包含图像的宽度和高度信息。特殊构造的PNG文件可以声明极大的图像尺寸,导致output_buffer_size计算出一个异常巨大的值。例如:
- 一个声明为100000x100000像素的32位RGBA图像
- 计算出的缓冲区大小将达到40GB(100000 * 100000 * 4字节)
当代码尝试为这样的大小分配内存时,会导致内存不足(OOM)错误。在fuzz测试中,仅用几十字节的特殊PNG文件头就能触发这个问题。
问题影响
这种内存分配问题可能导致以下后果:
- 服务拒绝(DoS):消耗大量系统内存,导致服务崩溃或系统不稳定
- 潜在的风险:可能被利用作为其他问题的跳板
- 资源耗尽:在资源受限的环境中问题更为严重
解决方案
修复此问题的关键在于添加合理的图像尺寸限制检查。建议采取以下措施:
- 在调用
output_buffer_size后,添加最大尺寸验证 - 根据实际应用场景设置合理的上限值
- 对解码过程进行封装,添加安全防护层
示例修复代码可能如下:
const MAX_IMAGE_SIZE: usize = 16 * 1024 * 1024; // 16MB限制
fn safe_decode_png(data: &[u8]) -> Result<Vec<u8>, Error> {
let decoder = png::Decoder::new(data);
let (info, mut reader) = decoder.read_info()?;
let buffer_size = reader.output_buffer_size();
if buffer_size > MAX_IMAGE_SIZE {
return Err(Error::new("Image size exceeds limit"));
}
let mut buffer = vec![0; buffer_size];
reader.next_frame(&mut buffer)?;
Ok(buffer)
}
防御性编程建议
在处理外部输入数据时,特别是像图像这样的复杂格式,应该始终遵循以下原则:
- 尽早验证:在解码前检查基本参数
- 设置合理限制:根据应用场景限制资源使用
- 优雅失败:当遇到异常情况时安全地终止处理
- 深度防御:在多层添加安全检查
总结
这次发现的问题提醒我们,在处理外部数据时必须保持警惕。即使是像PNG这样的常见格式,也需要谨慎处理其元数据。IronRDP项目通过fuzz测试发现并修复这个问题,体现了现代软件开发中自动化测试和安全审计的重要性。对于开发者而言,在实现协议处理逻辑时,应当始终考虑特殊输入的可能性,并采取相应的防护措施。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
267
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
52
32