IronRDP项目中的PNG解码内存溢出问题分析与防护
2025-07-01 07:58:57作者:房伟宁
在远程桌面协议(RDP)的实现中,剪贴板重定向(Clipboard Redirection)是一个重要功能,它允许客户端和服务器之间共享剪贴板内容。IronRDP作为RDP协议的Rust实现,其剪贴板重定向模块在处理特定格式数据时被发现存在潜在的内存安全问题。
问题背景
在IronRDP的剪贴板格式处理模块中,当解码PNG格式的位图数据时,系统会调用decode_png
函数。这个函数内部使用Rust的png库来解析PNG图像数据。问题出在对输出缓冲区大小的处理上——代码直接使用了png库计算出的output_buffer_size
值来创建Vec缓冲区,而没有进行任何大小限制检查。
技术细节分析
PNG文件头中包含图像的宽度和高度信息。特殊构造的PNG文件可以声明极大的图像尺寸,导致output_buffer_size
计算出一个异常巨大的值。例如:
- 一个声明为100000x100000像素的32位RGBA图像
- 计算出的缓冲区大小将达到40GB(100000 * 100000 * 4字节)
当代码尝试为这样的大小分配内存时,会导致内存不足(OOM)错误。在fuzz测试中,仅用几十字节的特殊PNG文件头就能触发这个问题。
问题影响
这种内存分配问题可能导致以下后果:
- 服务拒绝(DoS):消耗大量系统内存,导致服务崩溃或系统不稳定
- 潜在的风险:可能被利用作为其他问题的跳板
- 资源耗尽:在资源受限的环境中问题更为严重
解决方案
修复此问题的关键在于添加合理的图像尺寸限制检查。建议采取以下措施:
- 在调用
output_buffer_size
后,添加最大尺寸验证 - 根据实际应用场景设置合理的上限值
- 对解码过程进行封装,添加安全防护层
示例修复代码可能如下:
const MAX_IMAGE_SIZE: usize = 16 * 1024 * 1024; // 16MB限制
fn safe_decode_png(data: &[u8]) -> Result<Vec<u8>, Error> {
let decoder = png::Decoder::new(data);
let (info, mut reader) = decoder.read_info()?;
let buffer_size = reader.output_buffer_size();
if buffer_size > MAX_IMAGE_SIZE {
return Err(Error::new("Image size exceeds limit"));
}
let mut buffer = vec![0; buffer_size];
reader.next_frame(&mut buffer)?;
Ok(buffer)
}
防御性编程建议
在处理外部输入数据时,特别是像图像这样的复杂格式,应该始终遵循以下原则:
- 尽早验证:在解码前检查基本参数
- 设置合理限制:根据应用场景限制资源使用
- 优雅失败:当遇到异常情况时安全地终止处理
- 深度防御:在多层添加安全检查
总结
这次发现的问题提醒我们,在处理外部数据时必须保持警惕。即使是像PNG这样的常见格式,也需要谨慎处理其元数据。IronRDP项目通过fuzz测试发现并修复这个问题,体现了现代软件开发中自动化测试和安全审计的重要性。对于开发者而言,在实现协议处理逻辑时,应当始终考虑特殊输入的可能性,并采取相应的防护措施。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44