IronRDP项目中的PNG解码内存溢出问题分析与防护
2025-07-01 11:41:10作者:房伟宁
在远程桌面协议(RDP)的实现中,剪贴板重定向(Clipboard Redirection)是一个重要功能,它允许客户端和服务器之间共享剪贴板内容。IronRDP作为RDP协议的Rust实现,其剪贴板重定向模块在处理特定格式数据时被发现存在潜在的内存安全问题。
问题背景
在IronRDP的剪贴板格式处理模块中,当解码PNG格式的位图数据时,系统会调用decode_png函数。这个函数内部使用Rust的png库来解析PNG图像数据。问题出在对输出缓冲区大小的处理上——代码直接使用了png库计算出的output_buffer_size值来创建Vec缓冲区,而没有进行任何大小限制检查。
技术细节分析
PNG文件头中包含图像的宽度和高度信息。特殊构造的PNG文件可以声明极大的图像尺寸,导致output_buffer_size计算出一个异常巨大的值。例如:
- 一个声明为100000x100000像素的32位RGBA图像
- 计算出的缓冲区大小将达到40GB(100000 * 100000 * 4字节)
当代码尝试为这样的大小分配内存时,会导致内存不足(OOM)错误。在fuzz测试中,仅用几十字节的特殊PNG文件头就能触发这个问题。
问题影响
这种内存分配问题可能导致以下后果:
- 服务拒绝(DoS):消耗大量系统内存,导致服务崩溃或系统不稳定
- 潜在的风险:可能被利用作为其他问题的跳板
- 资源耗尽:在资源受限的环境中问题更为严重
解决方案
修复此问题的关键在于添加合理的图像尺寸限制检查。建议采取以下措施:
- 在调用
output_buffer_size后,添加最大尺寸验证 - 根据实际应用场景设置合理的上限值
- 对解码过程进行封装,添加安全防护层
示例修复代码可能如下:
const MAX_IMAGE_SIZE: usize = 16 * 1024 * 1024; // 16MB限制
fn safe_decode_png(data: &[u8]) -> Result<Vec<u8>, Error> {
let decoder = png::Decoder::new(data);
let (info, mut reader) = decoder.read_info()?;
let buffer_size = reader.output_buffer_size();
if buffer_size > MAX_IMAGE_SIZE {
return Err(Error::new("Image size exceeds limit"));
}
let mut buffer = vec![0; buffer_size];
reader.next_frame(&mut buffer)?;
Ok(buffer)
}
防御性编程建议
在处理外部输入数据时,特别是像图像这样的复杂格式,应该始终遵循以下原则:
- 尽早验证:在解码前检查基本参数
- 设置合理限制:根据应用场景限制资源使用
- 优雅失败:当遇到异常情况时安全地终止处理
- 深度防御:在多层添加安全检查
总结
这次发现的问题提醒我们,在处理外部数据时必须保持警惕。即使是像PNG这样的常见格式,也需要谨慎处理其元数据。IronRDP项目通过fuzz测试发现并修复这个问题,体现了现代软件开发中自动化测试和安全审计的重要性。对于开发者而言,在实现协议处理逻辑时,应当始终考虑特殊输入的可能性,并采取相应的防护措施。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
308
2.71 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
788
暂无简介
Dart
598
132
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
Ascend Extension for PyTorch
Python
141
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
766
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232